Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Zinc-indiffused MgO:PPLN waveguides for blue/UV generation via VECSEL pumping

Open Access Open Access

Abstract

We present the design and characterization of a zinc-indiffused periodically poled lithium-niobate ridge waveguide for second-harmonic generation of ${\sim}{390}\;{\rm nm}$ light from 780 nm. We use a newly developed, broadband near-infrared vertical external-cavity surface-emitting laser (VECSEL) to investigate the potential for lower-footprint nonlinear optical pump sources as an alternative to larger commercial laser systems. We demonstrate a VECSEL with an output power of 500 mW, containing an intracavity birefringent filter for spectral narrowing and wavelength selection. In this first demonstration of using a VECSEL to pump a nonlinear waveguide, we present the ability to generate 1 mW of ${\sim}{390}\;{\rm nm}$ light with further potential for increased efficiency and size reduction.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
More Like This
Zn-indiffused diced ridge waveguides in MgO:PPLN generating 1 watt 780 nm SHG at 70% efficiency

Sam A. Berry, Lewis G. Carpenter, Alan C. Gray, Peter G. R. Smith, and Corin B. E. Gawith
OSA Continuum 2(12) 3456-3464 (2019)

ZnO indiffused MgO:PPLN ridge waveguides

Lewis G. Carpenter, Sam A. Berry, Rex H. S. Bannerman, Alan C. Gray, and Corin B. E. Gawith
Opt. Express 27(17) 24538-24544 (2019)

CW demonstration of SHG spectral narrowing in a PPLN waveguide generating 2.5 W at 780 nm

Lewis G. Carpenter, Sam A. Berry, Alan C. Gray, James C. Gates, Peter G. R. Smith, and Corin B. E. Gawith
Opt. Express 28(15) 21382-21390 (2020)

References

  • View by:

  1. R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
    [Crossref]
  2. S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
    [Crossref]
  3. S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
    [Crossref]
  4. K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, and M. Imaeda, “Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3,” Opt. Lett. 28, 1344–1346 (2003).
    [Crossref]
  5. A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti: indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
    [Crossref]
  6. C. Eigner, M. Santandrea, L. Padberg, M. F. Volk, C. E. Rüter, H. Herrmann, D. Kip, and C. Silberhorn, “Periodically poled ridge waveguides in KTP for second harmonic generation in the UV regime,” Opt. Express 26, 28827–28833 (2018).
    [Crossref]
  7. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched crystal,” Opt. Lett. 24, 205–207 (1999).
    [Crossref]
  8. R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
    [Crossref]
  9. F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24, 576–580 (2007).
    [Crossref]
  10. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [Crossref]
  11. W. P. Risk, T. Gosnell, and A. Nurmikko, Compact Blue-Green Lasers (Cambridge University, 2003).
  12. G. Boyd and D. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [Crossref]
  13. S. A. Berry, L. G. Carpenter, A. C. Gray, P. G. R. Smith, and C. B. E. Gawith, “Zn-indiffused diced ridge waveguides in MgO:PPLN generating 1 watt 780  nm SHG at 70% efficiency,” OSA Continuum 2, 3456–3464 (2019).
    [Crossref]
  14. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  15. M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551–1553 (1999).
    [Crossref]
  16. D. Pabœuf and J. E. Hastie, “Tunable narrow linewidth AlGaInP semiconductor disk laser for Sr atom cooling applications,” Appl. Opt. 55, 4980–4984 (2016).
    [Crossref]
  17. P. Moriya and J. Hastie, “Sub-kHz linewidth VECSEL for cold atom experiments,” in Laser Congress 2018 (ASSL) (Optical Society of America, 2018), p. ATh5A.4.
  18. Y. Kaneda, M. Hart, S. H. Warner, J.-P. Penttinen, and M. Guina, “Narrow-linewidth operation of folded 1178nm vecsel with twisted-mode cavity,” Opt. Express 27, 27267–27272 (2019).
    [Crossref]
  19. S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
    [Crossref]
  20. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
    [Crossref]
  21. C. R. Head, T. C. Sverre, J. Woods, A. Hein, M. Polanik, A. P. Turnbull, E. A. Shaw, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Study of dielectric coatings for broadband operation of surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 36, 752–756 (2019).
    [Crossref]
  22. H. Kahle, K. Nechay, J.-P. Penttinen, A. Tukiainen, S. Ranta, and M. Guina, “AlGaAs-based vertical-external-cavity surface-emitting laser exceeding 4  W of direct emission power in the 740–790  nm spectral range,” Opt. Lett. 43, 1578–1581 (2018).
    [Crossref]
  23. R. Paquet, S. Blin, M. Myara, L. L. Gratiet, M. Sellahi, B. Chomet, G. Beaudoin, I. Sagnes, and A. Garnache, “Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz–THz applications,” Opt. Lett. 41, 3751–3754 (2016).
    [Crossref]
  24. J. Woods, D. Heath, J. Daykin, T. C. Sverre, B. Keenlyside, B. Mills, I. Sagnes, G. Beaudoin, S. Blin, A. Garnache, A. Tropper, and V. Apostolopoulos, “Semiconductor disk laser in bi-frequency operation by laser ablation micromachining of a laser mirror,” Opt. Express 27, 22316–22326 (2019).
    [Crossref]
  25. T. Chen Sverre, J. R. C. Woods, M. Polanik, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Continuous repetition rate tuning from 960  MHz to 1.72  GHz of a sub-300 femtosecond mode-locked semiconductor disk laser,” Appl. Phys. Lett. 113, 161106 (2018).
    [Crossref]
  26. J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
    [Crossref]
  27. J. M. Rodrguez-Garca, D. Pabœuf, and J. E. Hastie, “Tunable, CW laser emission at 225 nm via intracavity frequency tripling in a semiconductor disk laser,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2017).
    [Crossref]
  28. H. Kahle, J.-P. Penttinen, H.-M. Phung, P. Rajala, A. Tukiainen, S. Ranta, and M. Guina, “Comparison of single-side and double-side pumping of membrane external-cavity surface-emitting lasers,” Opt. Lett. 44, 1146–1149 (2019).
    [Crossref]
  29. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
    [Crossref]
  30. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]
  31. L. G. Carpenter, S. A. Berry, R. H. S. Bannerman, A. C. Gray, and C. B. E. Gawith, “ZnO indiffused MgO:PPLN ridge waveguides,” Opt. Express 27, 24538–24544 (2019).
    [Crossref]
  32. A. C. Gray, S. A. Berry, L. G. Carpenter, J. C. Gates, P. G. R. Smith, and C. B. E. Gawith, “Investigation of PPLN waveguide uniformity via second harmonic generation spectra,” IEEE Photon. Technol. Lett. 32, 63–66 (2020).
    [Crossref]
  33. M. Santandrea, M. Stefszky, and C. Silberhorn, “General framework for the analysis of imperfections in nonlinear systems,” Opt. Lett. 44, 5398–5401 (2019).
    [Crossref]
  34. R. Regener and W. Sohler, “Efficient second-harmonic generation in Ti:LiNbO3 channel waveguide resonators,” J. Opt. Soc. Am. B 5, 267–277 (1988).
    [Crossref]

2020 (1)

A. C. Gray, S. A. Berry, L. G. Carpenter, J. C. Gates, P. G. R. Smith, and C. B. E. Gawith, “Investigation of PPLN waveguide uniformity via second harmonic generation spectra,” IEEE Photon. Technol. Lett. 32, 63–66 (2020).
[Crossref]

2019 (8)

C. R. Head, T. C. Sverre, J. Woods, A. Hein, M. Polanik, A. P. Turnbull, E. A. Shaw, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Study of dielectric coatings for broadband operation of surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 36, 752–756 (2019).
[Crossref]

S. A. Berry, L. G. Carpenter, A. C. Gray, P. G. R. Smith, and C. B. E. Gawith, “Zn-indiffused diced ridge waveguides in MgO:PPLN generating 1 watt 780  nm SHG at 70% efficiency,” OSA Continuum 2, 3456–3464 (2019).
[Crossref]

Y. Kaneda, M. Hart, S. H. Warner, J.-P. Penttinen, and M. Guina, “Narrow-linewidth operation of folded 1178nm vecsel with twisted-mode cavity,” Opt. Express 27, 27267–27272 (2019).
[Crossref]

J. Woods, D. Heath, J. Daykin, T. C. Sverre, B. Keenlyside, B. Mills, I. Sagnes, G. Beaudoin, S. Blin, A. Garnache, A. Tropper, and V. Apostolopoulos, “Semiconductor disk laser in bi-frequency operation by laser ablation micromachining of a laser mirror,” Opt. Express 27, 22316–22326 (2019).
[Crossref]

L. G. Carpenter, S. A. Berry, R. H. S. Bannerman, A. C. Gray, and C. B. E. Gawith, “ZnO indiffused MgO:PPLN ridge waveguides,” Opt. Express 27, 24538–24544 (2019).
[Crossref]

H. Kahle, J.-P. Penttinen, H.-M. Phung, P. Rajala, A. Tukiainen, S. Ranta, and M. Guina, “Comparison of single-side and double-side pumping of membrane external-cavity surface-emitting lasers,” Opt. Lett. 44, 1146–1149 (2019).
[Crossref]

M. Santandrea, M. Stefszky, and C. Silberhorn, “General framework for the analysis of imperfections in nonlinear systems,” Opt. Lett. 44, 5398–5401 (2019).
[Crossref]

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

2018 (3)

2017 (1)

J. M. Rodrguez-Garca, D. Pabœuf, and J. E. Hastie, “Tunable, CW laser emission at 225 nm via intracavity frequency tripling in a semiconductor disk laser,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2017).
[Crossref]

2016 (3)

2014 (1)

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref]

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

2007 (2)

F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24, 576–580 (2007).
[Crossref]

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

2006 (2)

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

2005 (1)

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

2004 (1)

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti: indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[Crossref]

2003 (1)

2000 (1)

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

1999 (2)

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551–1553 (1999).
[Crossref]

M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched crystal,” Opt. Lett. 24, 205–207 (1999).
[Crossref]

1997 (2)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[Crossref]

1988 (1)

1968 (1)

G. Boyd and D. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Apostolopoulos, V.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Baird, P.

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

Bannerman, R. H. S.

Barwood, G.

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

Beaudoin, G.

Berry, S. A.

Blin, S.

Bowers, J. E.

Boyd, G.

G. Boyd and D. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Bramati, A.

Burns, D.

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551–1553 (1999).
[Crossref]

Busacca, A. C.

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti: indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[Crossref]

Carpenter, L. G.

Chang, L.

Chen Sverre, T.

T. Chen Sverre, J. R. C. Woods, M. Polanik, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Continuous repetition rate tuning from 960  MHz to 1.72  GHz of a sub-300 femtosecond mode-locked semiconductor disk laser,” Appl. Phys. Lett. 113, 161106 (2018).
[Crossref]

Chiummo, A.

Chomet, B.

Czeranowsky, C.

Dawson, M. D.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[Crossref]

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551–1553 (1999).
[Crossref]

Daykin, J.

Dhanjal, S.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Donnellan, S.

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

Eason, R. W.

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti: indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[Crossref]

Eigner, C.

Ferguson, A. I.

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551–1553 (1999).
[Crossref]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Garnache, A.

Gates, J. C.

A. C. Gray, S. A. Berry, L. G. Carpenter, J. C. Gates, P. G. R. Smith, and C. B. E. Gawith, “Investigation of PPLN waveguide uniformity via second harmonic generation spectra,” IEEE Photon. Technol. Lett. 32, 63–66 (2020).
[Crossref]

Gawith, C. B. E.

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Giacobino, E.

Gill, P.

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

Gosnell, T.

W. P. Risk, T. Gosnell, and A. Nurmikko, Compact Blue-Green Lasers (Cambridge University, 2003).

Gratiet, L. L.

Gray, A. C.

Guina, M.

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

Haring, R.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Hart, M.

Hastie, J.

P. Moriya and J. Hastie, “Sub-kHz linewidth VECSEL for cold atom experiments,” in Laser Congress 2018 (ASSL) (Optical Society of America, 2018), p. ATh5A.4.

Hastie, J. E.

J. M. Rodrguez-Garca, D. Pabœuf, and J. E. Hastie, “Tunable, CW laser emission at 225 nm via intracavity frequency tripling in a semiconductor disk laser,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2017).
[Crossref]

D. Pabœuf and J. E. Hastie, “Tunable narrow linewidth AlGaInP semiconductor disk laser for Sr atom cooling applications,” Appl. Opt. 55, 4980–4984 (2016).
[Crossref]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[Crossref]

Head, C. R.

Heath, D.

Hein, A.

Hensinger, W. K.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref]

Herrmann, H.

Holm, M. A.

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551–1553 (1999).
[Crossref]

Hoogland, S.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Huang, G.

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

Huber, G.

Imaeda, M.

Ito, R.

Kahle, H.

Kaneda, Y.

Karlsson, H.

Kawaguchi, T.

Keenlyside, B.

Keller, U.

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Kellner, T.

Kemp, A. J.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[Crossref]

Kip, D.

Kitamoto, A.

Klein, H.

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

Kleinman, D.

G. Boyd and D. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Kondo, T.

Kraft, M.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref]

Krysa, A. B.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

Lake, K.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref]

Laurell, F.

Le Targat, R.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Lemonde, P.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Li, Y.

Mailis, S.

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti: indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[Crossref]

Matsukevich, D. N.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Maunz, P.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Mills, B.

Mizuuchi, K.

Moehring, D. L.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Monroe, C.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

Morier-Genoud, F.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Moriya, P.

P. Moriya and J. Hastie, “Sub-kHz linewidth VECSEL for cold atom experiments,” in Laser Congress 2018 (ASSL) (Optical Society of America, 2018), p. ATh5A.4.

Morton, L. G.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[Crossref]

Mulholland, S.

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

Myara, M.

Nechay, K.

Nisbet-Jones, P.

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

Nurmikko, A.

W. P. Risk, T. Gosnell, and A. Nurmikko, Compact Blue-Green Lasers (Cambridge University, 2003).

Olmschenk, S.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Pabœuf, D.

J. M. Rodrguez-Garca, D. Pabœuf, and J. E. Hastie, “Tunable, CW laser emission at 225 nm via intracavity frequency tripling in a semiconductor disk laser,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2017).
[Crossref]

D. Pabœuf and J. E. Hastie, “Tunable narrow linewidth AlGaInP semiconductor disk laser for Sr atom cooling applications,” Appl. Opt. 55, 4980–4984 (2016).
[Crossref]

Padberg, L.

Paquet, R.

Paschotta, R.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Penttinen, J.-P.

Peters, J.

Phung, H.-M.

Pierrou, M.

Polanik, M.

C. R. Head, T. C. Sverre, J. Woods, A. Hein, M. Polanik, A. P. Turnbull, E. A. Shaw, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Study of dielectric coatings for broadband operation of surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 36, 752–756 (2019).
[Crossref]

T. Chen Sverre, J. R. C. Woods, M. Polanik, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Continuous repetition rate tuning from 960  MHz to 1.72  GHz of a sub-300 femtosecond mode-locked semiconductor disk laser,” Appl. Phys. Lett. 113, 161106 (2018).
[Crossref]

Rajala, P.

Ranta, S.

Rattanasonti, H.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref]

Regener, R.

Risk, W. P.

W. P. Risk, T. Gosnell, and A. Nurmikko, Compact Blue-Green Lasers (Cambridge University, 2003).

Roberts, J. S.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Rodrguez-Garca, J. M.

J. M. Rodrguez-Garca, D. Pabœuf, and J. E. Hastie, “Tunable, CW laser emission at 225 nm via intracavity frequency tripling in a semiconductor disk laser,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2017).
[Crossref]

Rüter, C. E.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Sagnes, I.

Santandrea, M.

Sellahi, M.

Shaw, E. A.

Shirane, M.

Shoji, I.

Silberhorn, C.

Smith, P. G. R.

A. C. Gray, S. A. Berry, L. G. Carpenter, J. C. Gates, P. G. R. Smith, and C. B. E. Gawith, “Investigation of PPLN waveguide uniformity via second harmonic generation spectra,” IEEE Photon. Technol. Lett. 32, 63–66 (2020).
[Crossref]

S. A. Berry, L. G. Carpenter, A. C. Gray, P. G. R. Smith, and C. B. E. Gawith, “Zn-indiffused diced ridge waveguides in MgO:PPLN generating 1 watt 780  nm SHG at 70% efficiency,” OSA Continuum 2, 3456–3464 (2019).
[Crossref]

Sohler, W.

Sones, C. L.

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti: indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[Crossref]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

Srinivasan, P.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref]

Stefszky, M.

Sterling, R. C.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref]

Sugita, T.

Sverre, T. C.

Tropper, A.

Tropper, A. C.

C. R. Head, T. C. Sverre, J. Woods, A. Hein, M. Polanik, A. P. Turnbull, E. A. Shaw, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Study of dielectric coatings for broadband operation of surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 36, 752–756 (2019).
[Crossref]

T. Chen Sverre, J. R. C. Woods, M. Polanik, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Continuous repetition rate tuning from 960  MHz to 1.72  GHz of a sub-300 femtosecond mode-locked semiconductor disk laser,” Appl. Phys. Lett. 113, 161106 (2018).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Tukiainen, A.

Turnbull, A. P.

Unger, P.

C. R. Head, T. C. Sverre, J. Woods, A. Hein, M. Polanik, A. P. Turnbull, E. A. Shaw, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Study of dielectric coatings for broadband operation of surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 36, 752–756 (2019).
[Crossref]

T. Chen Sverre, J. R. C. Woods, M. Polanik, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Continuous repetition rate tuning from 960  MHz to 1.72  GHz of a sub-300 femtosecond mode-locked semiconductor disk laser,” Appl. Phys. Lett. 113, 161106 (2018).
[Crossref]

Villa, F.

Volet, N.

Volk, M. F.

Walsh, G.

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

Wang, L.

Warner, S. H.

Webster, S.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref]

Weidt, S.

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref]

Woods, J.

Woods, J. R. C.

T. Chen Sverre, J. R. C. Woods, M. Polanik, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Continuous repetition rate tuning from 960  MHz to 1.72  GHz of a sub-300 femtosecond mode-locked semiconductor disk laser,” Appl. Phys. Lett. 113, 161106 (2018).
[Crossref]

Yamamoto, K.

Yoshino, T.

Younge, K. C.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Zondy, J.-J.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Appl. Phys. Lett. (3)

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti: indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[Crossref]

T. Chen Sverre, J. R. C. Woods, M. Polanik, P. Unger, A. C. Tropper, and V. Apostolopoulos, “Continuous repetition rate tuning from 960  MHz to 1.72  GHz of a sub-300 femtosecond mode-locked semiconductor disk laser,” Appl. Phys. Lett. 113, 161106 (2018).
[Crossref]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Rodrguez-Garca, D. Pabœuf, and J. E. Hastie, “Tunable, CW laser emission at 225 nm via intracavity frequency tripling in a semiconductor disk laser,” IEEE J. Sel. Top. Quantum Electron. 23, 1–8 (2017).
[Crossref]

IEEE Photon. Technol. Lett (1)

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551–1553 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (3)

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

A. C. Gray, S. A. Berry, L. G. Carpenter, J. C. Gates, P. G. R. Smith, and C. B. E. Gawith, “Investigation of PPLN waveguide uniformity via second harmonic generation spectra,” IEEE Photon. Technol. Lett. 32, 63–66 (2020).
[Crossref]

J. Appl. Phys. (1)

G. Boyd and D. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (4)

Nat. Commun. (1)

R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. Webster, M. Kraft, and W. K. Hensinger, “Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip,” Nat. Commun. 5, 3637 (2014).
[Crossref]

OSA Continuum (1)

Opt. Commun. (1)

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Optica (1)

Phys. Rep. (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

Phys. Rev. A (1)

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped hyperfine qubit,” Phys. Rev. A 76, 052314 (2007).
[Crossref]

Rev. Sci. Instru. (1)

S. Mulholland, H. Klein, G. Barwood, S. Donnellan, P. Nisbet-Jones, G. Huang, G. Walsh, P. Baird, and P. Gill, “Compact laser system for a laser-cooled ytterbium ion microwave frequency standard,” Rev. Sci. Instru. 90, 033105 (2019).
[Crossref]

Other (2)

W. P. Risk, T. Gosnell, and A. Nurmikko, Compact Blue-Green Lasers (Cambridge University, 2003).

P. Moriya and J. Hastie, “Sub-kHz linewidth VECSEL for cold atom experiments,” in Laser Congress 2018 (ASSL) (Optical Society of America, 2018), p. ATh5A.4.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Fabrication process flow of the zinc-indiffused PPLN waveguides.
Fig. 2.
Fig. 2. (a) Mode field diameters of zinc-indiffusion planar layers versus metallic layer thickness and indiffusion temperature. (b) Example scanning electron micrograph in backscatter detection mode of a PPLN ridge waveguide.
Fig. 3.
Fig. 3. PPLN waveguide phase-matching spectrum characterization performed through lock-in amplification detection at room temperature. Inset shows the output profile of the 780 nm mode propagating in this waveguide.
Fig. 4.
Fig. 4. VECSEL cavity configuration and the position of the PPLN waveguide in the setup, which is utilized as an extra-cavity component.
Fig. 5.
Fig. 5. (a) Power output of the VECSEL as a function of incident power, with and without the BRF, and spatial intensity profile of the laser emission. Here, we measure the power after all pump delivery optics and account for the calculated Fresnel reflection at the SiC-air surface. This inset displays an example optical spectrum of the laser in operation with the BRF included. Shoulders in the spectrum occur at approximately -20 dB of the spectral peak power. (b) Beam profile of the collimated output of the VECSEL.
Fig. 6.
Fig. 6. Temperature sweep of the phase-matching spectrum pumped with the VECSEL.
Fig. 7.
Fig. 7. SHG power as a function of pump throughput power for low pump powers. Taken via attenuation of the VECSEL beam directly after the output coupling mirror.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ = 2 π Δ β ,

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved