Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Beam-angle-scanning surface plasmon resonance sensor for rapid, high-precision sensing of refractive index and bio-molecules

Open Access Open Access

Abstract

Surface plasmon resonance (SPR) sensors are powerful tools for optical sensing of refractive index (RI) and bio-molecules due to their high sensitivity. In this article, we demonstrate a beam-angle-scanning SPR system using a combined galvanometer mirror and relay lens optics. Use of a photodetector in the galvanometer mirror scanning of the incident beam angle enables both high precision and rapid data acquisition. RI resolution of 2.306×10−5 refractive index unit (RIU) and RI accuracy of 8.984×10−5 RIU were achieved at a data acquisition rate of 100 Hz. Furthermore, we performed real-time monitoring of the avidin-biotin antigen-antibody reaction. The results show the high potential of this beam-angle-scanning SPR system.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Numerical approach to design the graphene-based multilayered surface plasmon resonance biosensor for the rapid detection of the novel coronavirus

Shahriar Mostufa, Tarik Bin Abdul Akib, Md. Masud Rana, Ibrahim M. Mehedi, Ubaid M. Al-Saggaf, Abdulrahman U. Alsaggaf, Mohammed U Alsaggaf, and Md. Sarowar Alam
Opt. Continuum 1(3) 494-515 (2022)

Highly sensitive double D-shaped channel photonic crystal fiber based plasmonic refractive index sensor

M. Ifaz Ahmad Isti, M. Hussayeen Khan Anik, Samiha Nuzhat, Rubel Chandra Talukder, Sadia Sultana, Shovasis Kumar Biswas, and Hriteshwar Talukder
Opt. Continuum 1(3) 575-590 (2022)

Design and analysis of a highly sensitive modified square structure dual slotted single core plasmonic biosensor

Nazmus Sakib, Sumaya Arafin, Zayed Anis, Walid Hassan, Thouhidur Rahman, and Tazin Fatema
Opt. Continuum 1(2) 143-160 (2022)

References

  • View by:

  1. P. Pattnaik, “Surface plasmon resonance,” Appl. Biochem. Biotechnol. 126(2), 079–092 (2005).
    [Crossref]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
    [Crossref]
  3. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref]
  4. E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
    [Crossref]
  5. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
    [Crossref]
  6. W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
    [Crossref]
  7. H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
    [Crossref]
  8. K. Tiwari and S. C. Sharma, “Surface plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal interface,” Sens. Actuators, A 216, 128–135 (2014).
    [Crossref]
  9. C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
    [Crossref]
  10. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
    [Crossref]
  11. A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett. 37(7), 1175–1177 (2012).
    [Crossref]
  12. S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
    [Crossref]
  13. Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
    [Crossref]
  14. D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
    [Crossref]
  15. D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
    [Crossref]
  16. R. V. Andaloro, H. J. Simon, and R. T. Deck, “Temporal pulse reshaping with surface waves,” Appl. Opt. 33(27), 6340–6347 (1994).
    [Crossref]
  17. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref]
  18. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
    [Crossref]
  19. R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
    [Crossref]

2019 (1)

Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]

2018 (3)

2014 (2)

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]

K. Tiwari and S. C. Sharma, “Surface plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal interface,” Sens. Actuators, A 216, 128–135 (2014).
[Crossref]

2012 (1)

2011 (1)

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]

2010 (1)

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]

2007 (1)

W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
[Crossref]

2006 (1)

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]

2005 (1)

P. Pattnaik, “Surface plasmon resonance,” Appl. Biochem. Biotechnol. 126(2), 079–092 (2005).
[Crossref]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

1998 (1)

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

1997 (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

1994 (1)

1988 (1)

1973 (1)

Abdulhalim, I.

Albers, M.

D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]

Andaloro, R. V.

Aroeti, B.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]

Baillargeat, D.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]

Berger, C. E. H.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Beumer, T. A. M.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Boukherroub, R.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]

Chen, S.-C.

Chuah, H. P.

W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
[Crossref]

Cong, H.

Dai, X.

Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]

Davidov, D.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]

Deck, R. T.

Fukano, H.

Gan, S.

Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

Granqvist, N.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]

Greve, J.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Habraken, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]

Hale, G. M.

Hastanin, J.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]

Ho, H. P.

Ho, H.-P.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

Iwata, T.

Kawata, S.

Kong, S. K.

Kool, J.

D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]

Kooyman, R. P. H.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Kuncova-Kallio, J.

D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]

Lakayan, D.

D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]

Lenaerts, C.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]

Liang, H.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]

Lin, W.

Lirtsman, V.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]

Loo, F.-C.

Mahmood, M. Y. W.

W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
[Crossref]

Maricot, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]

Matsubara, K.

Minami, S.

Minamikawa, T.

Minoshima, K.

Miranto, H.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]

Mizuno, T.

Mizutani, Y.

Nagai, K.

Nakajima, Y.

Oe, R.

Pattnaik, P.

P. Pattnaik, “Surface plasmon resonance,” Appl. Biochem. Biotechnol. 126(2), 079–092 (2005).
[Crossref]

Querry, M. R.

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Sadowski, J. W.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]

Shalabney, A.

Sharma, S. C.

K. Tiwari and S. C. Sharma, “Surface plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal interface,” Sens. Actuators, A 216, 128–135 (2014).
[Crossref]

Shibuya, K.

Simon, H. J.

Somsen, G. W.

D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]

Szunerits, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]

Taue, S.

Tiwari, K.

K. Tiwari and S. C. Sharma, “Surface plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal interface,” Sens. Actuators, A 216, 128–135 (2014).
[Crossref]

Tuppurainen, J.

D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]

van Iperen, D. J.

D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]

van Lint, M. J.

D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]

Viitala, T.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]

Vilcot, J.-P.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]

Wang, B.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]

Wang, D.

Weda, J. J. A.

D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]

Wijaya, E.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Yam, Y.

Yamagiwa, M.

Yamamoto, H.

Yasui, T.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

Yliperttula, M.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]

Yong, K.-T.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]

Yusmawati, W. Y. W.

W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
[Crossref]

Zeng, S.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]

Zhang, G.

Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]

Zhao, Y.

Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]

Ziblat, R.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]

Am. J. Appl. Sci. (1)

W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref]

Anal. Chem. (1)

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Appl. Biochem. Biotechnol. (1)

P. Pattnaik, “Surface plasmon resonance,” Appl. Biochem. Biotechnol. 126(2), 079–092 (2005).
[Crossref]

Appl. Opt. (3)

Biophys. J. (1)

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]

Chem. Soc. Rev. (1)

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]

Curr. Opin. Solid State Mater. Sci. (1)

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]

Meas. Sci. Technol. (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Results Phys. (1)

Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]

Sens. Actuators, A (1)

K. Tiwari and S. C. Sharma, “Surface plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal interface,” Sens. Actuators, A 216, 128–135 (2014).
[Crossref]

Sens. Actuators, B (3)

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. Laser, He-Ne laser; L1 and L2, lenses; P, Glan-Taylor polarizer; GM, single-axis galvanometer mirror; RL1, RL2, RL3, and RL4, relay lenses; PD, photodetector; DAQ, data acquisition board; WG, waveform generator.
Fig. 2.
Fig. 2. Comparison of SPR dip spectra between experimental data and theoretical curve. A sample is air (RI = 1 RIU).
Fig. 3.
Fig. 3. Angular spectra of SPR dip at a data acquisition rate of 1 Hz, 10 Hz, and 100 Hz when a sample is air (RI = 1 RIU).
Fig. 4.
Fig. 4. (a) Angle-SPR spectrum, (b) the corresponding sensorgram, and (c) the corresponding relation between sample RI and θSPR in RI sensing of ethanol/water samples with different mixing ratios. (d) Reproducibility of RI sensing when five different ethanol/water samples were measured.
Fig. 5.
Fig. 5. Sensorgram of θSPR in the avidin-biotin interaction when the molar concentration of avidin was increased from 1 nM to 10 µM.
Fig. 6.
Fig. 6. Angle-SPR spectrum of the pure water measured using (a) the GM-based beam-scanning angle-SPR mode and (b) the multi-channel angle-SPR mode. Experimental data and the corresponding fitting curve were indicated as a red line and a blue one, respectively. Residual of reflectance between the experimental data and the fitting curve in (c) the GM-based beam-scanning angle-SPR mode and (d) the multi-channel angle-SPR mode.

Tables (1)

Tables Icon

Table 1. Comparison of specification among the GM-based beam-scanning angle-SPR mode, the DMD-based beam-scanning angle-SPR mode, and a commercialized multi-channel angle-SPR mode

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R I = 1.3317 + 2.8 × 10 4 × E C .

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved