Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]
D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]
K. Tiwari and S. C. Sharma, “Surface plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal interface,” Sens. Actuators, A 216, 128–135 (2014).
[Crossref]
E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]
H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]
W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
[Crossref]
R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]
P. Pattnaik, “Surface plasmon resonance,” Appl. Biochem. Biotechnol. 126(2), 079–092 (2005).
[Crossref]
J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]
C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]
J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]
R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]
S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]
C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]
C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]
E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]
D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
[Crossref]
W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
[Crossref]
D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
[Crossref]
Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]
R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]
H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]
C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]
E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]
E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]
D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
[Crossref]
S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]
J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]
C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]
J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]
E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]
H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]
D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
[Crossref]
R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]
D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
[Crossref]
W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
[Crossref]
E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
P. Pattnaik, “Surface plasmon resonance,” Appl. Biochem. Biotechnol. 126(2), 079–092 (2005).
[Crossref]
J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]
H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]
K. Tiwari and S. C. Sharma, “Surface plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal interface,” Sens. Actuators, A 216, 128–135 (2014).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]
E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
K. Tiwari and S. C. Sharma, “Surface plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal interface,” Sens. Actuators, A 216, 128–135 (2014).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]
H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]
E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]
H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]
D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]
E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]
J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]
D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]
H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]
S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]
W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
[Crossref]
S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]
Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]
Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]
R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]
W. Y. W. Yusmawati, H. P. Chuah, and M. Y. W. Mahmood, “Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance,” Am. J. Appl. Sci. 4(1), 1–4 (2007).
[Crossref]
J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref]
C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]
P. Pattnaik, “Surface plasmon resonance,” Appl. Biochem. Biotechnol. 126(2), 079–092 (2005).
[Crossref]
K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
[Crossref]
R. V. Andaloro, H. J. Simon, and R. T. Deck, “Temporal pulse reshaping with surface waves,” Appl. Opt. 33(27), 6340–6347 (1994).
[Crossref]
G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
[Crossref]
R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref]
S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref]
E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15(5), 208–224 (2011).
[Crossref]
J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]
R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref]
D. Wang, F.-C. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S.-C. Chen, and H. P. Ho, “Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation,” Opt. Express 26(19), 24627–24636 (2018).
[Crossref]
Y. Zhao, S. Gan, G. Zhang, and X. Dai, “High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator,” Results Phys. 14, 102477 (2019).
[Crossref]
K. Tiwari and S. C. Sharma, “Surface plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal interface,” Sens. Actuators, A 216, 128–135 (2014).
[Crossref]
H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators, B 149(1), 212–220 (2010).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]
D. Lakayan, J. Tuppurainen, M. Albers, M. J. van Lint, D. J. van Iperen, J. J. A. Weda, J. Kuncova-Kallio, G. W. Somsen, and J. Kool, “Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing,” Sens. Actuators, B 259, 972–979 (2018).
[Crossref]