Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering

Not Accessible

Your library or personal account may give you access

Abstract

Although laser-induced incandescence (LII) has been successfully used for soot volume fraction and particle size measurements, uncertainties remain regarding issues of soot vaporization leading to mass loss and morphological changes occurring in soot due to intense heating. Prompt LII detection schemes are often based on the assumption that the associated time scale is shorter than the time scale of soot vaporization or sublimation. The validity of such assumptions is the focus of the current study. Time-resolved light-scattering measurements were made in combination with LII measurements to quantify soot particle vaporization effects resulting from the LII laser pulse. The light-scattering measurements revealed a sharp decrease in total soot particle mass during the time course of the 25 ns full-width LII laser pulse for fluences in the range of 0.5 J/cm2. Light-scattering theory was used to invert the scattering data, revealing ≈80%–90% reductions in the soot particle volume for LII fluences of 0.47 and 0.61 J/cm2. In addition, the time-resolved scattering measurements show that the time scale of soot vaporization is completely confined to the LII laser pulse itself. Light scattering revealed no soot vaporization only for fluences of ∼0.1 J/cm2, which is consistent with recent work on low-fluence LII. Possible mechanisms for soot vaporization are discussed, notably for near-threshold fluences.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser-induced incandescence: excitation intensity

Randall L. Vander Wal and Kirk A. Jensen
Appl. Opt. 37(9) 1607-1616 (1998)

Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame

Peter O. Witze, Simone Hochgreb, David Kayes, Hope A. Michelsen, and Christopher R. Shaddix
Appl. Opt. 40(15) 2443-2452 (2001)

Laser-induced incandescence for soot diagnostics at high pressures

Max Hofmann, Wolfgang G. Bessler, Christof Schulz, and Helga Jander
Appl. Opt. 42(12) 2052-2062 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved