Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nonlinear refraction and absorption measurements of thin films by the dual-arm Z-scan method

Abstract

We extend the recently developed dual-arm Z-scan to increase the signal-to-noise ratio (SNR) for measuring the nonlinear refraction (NLR) of thin films on thick substrates. Similar to the case of solutes in solution, the phase shift due to NLR in a thin film can often be dominated by the phase shift due to NLR in the much thicker substrate. SNR enhancement is accomplished by simultaneously scanning a bare substrate and the film plus substrate in two separate but identical Z-scan arms. The subtraction of these signals taken simultaneously effectively cancels the nonlinear signal from the substrate, leaving only the signal from the film. More importantly, the SNR is increased since the correlated noise from effects such as beam-pointing instabilities cancels. To show the versatility of the dual-arm Z-scan method, we perform measurements on semiconductor and organic thin films, some less than 100 nm thick and with thicknesses up to 4 orders of magnitude less than the substrate.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements

Manuel R. Ferdinandus, Matthew Reichert, Trenton R. Ensley, Honghua Hu, Dmitry A. Fishman, Scott Webster, David J. Hagan, and Eric W. Van Stryland
Opt. Mater. Express 2(12) 1776-1790 (2012)

Z-scan measurements of nonlinear refraction and absorption for aluminum-doped zinc oxide thin film

Yixiang Xu, Yuangang Lu, Yujie Zuo, Feng Xu, and Dunwen Zuo
Appl. Opt. 58(22) 6112-6117 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved