Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 12,
  • pp. 1363-1369
  • (2008)

Application of Representative Layer Theory to Near-Infrared Reflectance Spectra of Powdered Samples

Not Accessible

Your library or personal account may give you access

Abstract

The diffuse reflectance near-infrared (NIR) spectrum of a powdered sample includes the contribution of specular and diffuse reflectance, which is a function of absorbance and scattering. The fraction of light scattered depends in a complex manner on the physical properties of the sample such as particle size, refraction index, etc. Several theories to study the dependence of NIR spectra on the particle size have been proposed. The best known is the Kubelka–Munk model, an approach based on continuous mathematics. Recently Dahm and Dahm put forward an alternative method, the representative layer theory (RLT), which uses discontinuous mathematics as a basis. This approach can be used to identify and disentangle the scattering and absorbance signals as well as their dependence on the particle size. The scattering and absorption coefficient of NaCl (a nonabsorbing material) and of potassium hydrogen phthalate, KHP (a strong absorber), have been estimated through the application of the representative layer theory, working on a particle size range from 63 to 450 μm. In both samples, the absorption coefficient of the sample (<i>K</i>) remains constant and practically independent of the particle size, while the scattering coefficient of the sample (<i>S</i>) decreases when the particle diameter increases, becoming stable around a diameter of 250 μm.

PDF Article
More Like This
Diffuse reflectance spectroscopy: a comparison of the theories

E. L. Simmons
Appl. Opt. 14(6) 1380-1386 (1975)

Fluorescence of mixed powder samples: a six-flux theory

John N. Pike
Appl. Opt. 20(7) 1167-1173 (1981)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved