Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 16,
  • pp. 3937-3942
  • (2016)

Dynamically Tunable Graphene Plasmon-Induced Transparency in the Terahertz Region

Not Accessible

Your library or personal account may give you access

Abstract

Active control of graphene plasmon-induced transparency (GPIT) metamaterial structures, composed of periodically patterned monopolar graphene and dipolar graphene, are presented and investigated. Numerical results reveal that the resonant frequency of GPIT structures can be dynamically tuned by varying the Fermi level of the T-shape graphene strip through controlling the voltage of the electrostatic gating. Coupled Lorentz oscillator model is applied to explore the physical mechanism of the frequency tunable GPIT. Furthermore, the group index of terahertz light can be controlled to exceed 350 in the THz region. It is also found that the interaction strength between the dipolar graphene and the monopolar graphene can be tuned by changing the distance between the radiative mode and the dark mode as well as the degree of the symmetry breaking. These tunable features of the GPIT devices are significant and may offer new opportunity to design active devices in the THz region, such as ultrasensitive sensors, slow light devices, and spectral filters.

© 2016 IEEE

PDF Article
More Like This
Metal-graphene hybridized plasmon induced transparency in the terahertz frequencies

Anqi Yu, Xuguang Guo, Yiming Zhu, Alexey V. Balakin, and Alexander P. Shkurinov
Opt. Express 27(24) 34731-34741 (2019)

Graphene patterns supported terahertz tunable plasmon induced transparency

Xiaoyong He, Feng Liu, Fangting Lin, and Wangzhou Shi
Opt. Express 26(8) 9931-9944 (2018)

Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Bin Sun, Jian-Qiang Liu, and Shuang-Chun Wen
Opt. Express 24(16) 17886-17899 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.