Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Coupling-rate determination based on radiation-pressure-induced normal mode splitting in cavity optomechanical systems

Not Accessible

Your library or personal account may give you access

Abstract

We theoretically propose a precise way to measure the coupling rate in an optomechanical system based on radiation-pressure-induced normal mode splitting. This all-optical method is effective in both weak and strong coupling regions. Simultaneously the vibrational frequency of the mechanical mode can also be detected easily in the reflected probe spectrum. The results are much useful for the extensive applications in optomechanical systems.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Optomechanically induced transparency in the mechanical-mode splitting regime

Jinyong Ma, Cai You, Liu-Gang Si, Hao Xiong, Xiaoxue Yang, and Ying Wu
Opt. Lett. 39(14) 4180-4183 (2014)

Transparency and tunable slow-fast light in a hybrid cavity optomechanical system

Qinghong Liao, Xing Xiao, Wenjie Nie, and Nanrun Zhou
Opt. Express 28(4) 5288-5305 (2020)

Determination of the vacuum optomechanical coupling rate using frequency noise calibration

M. L. Gorodetksy, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg
Opt. Express 18(22) 23236-23246 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved