Abstract
Bayesian optimization is an efficient numerical tool. We review approaches to improve its scalability and to handle noisy inputs, and we demonstrate applications in pho- tonics design optimization and in control of quantum experiments.
© 2021 The Author(s)
PDF ArticleMore Like This
Reda Ayassi, Ahmed Triki, Maxime Laye, Esther Le Rouzic, Noel Crespi, and Roberto Minerva
NeF2B.3 Photonic Networks and Devices (Networks) 2021
S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, D. Tew, J.L. O’Brien, and M. G. Thompson
FTu3G.5 Frontiers in Optics (FiO) 2016
Michał J. Piotrowicz, Thomas G. Akin, John Reintjes, Alex Kuzmich, Adam T. Black, and Mark Bashkansky
JW4A.61 Frontiers in Optics (FiO) 2018