Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Conference on Lasers and Electro-Optics
  • OSA Technical Digest (Optica Publishing Group, 1991),
  • paper CTuB1

Autocorrelation measurement of ultraviolet femtosecond pulsewidths by two-photon absorption in diamond

Not Accessible

Your library or personal account may give you access

Abstract

Recently a number of new femtosecond sources have been developed at near ultraviolet (190 nm < λ < 310 nm) wavelengths,1,2 opening up new applications in ultrafast molecular spectroscopy and high energy density physics.3 These sources include intracavity frequency-doubled dye lasers1 and high power excimer amplifiers.2 Nevertheless, pulsewidth measurement in the UV remains problematic compared to routine autocorrelation measurements in the visible and near-infrared based on phase-matched second harmonic generation (SHG) in transparent crystals. The lack of frequency doubling crystals in the UV necessitates alternative, usually less convenient and more expensive, methods. Here we present a simple, low-cost method of obtaining background-free second-order autocorrelation measurements of femtosecond pulses at least as far as 220 nm in the UV, and at pulse energy at least as low as the nanojoule regime, by using two-photon absorption (TPA) in diamond. Because undoped diamond has a wide band gap (5.45 eV), no linear optical absorption occurs at wavelengths λ >220 nm, the range of most currently available UV femtosecond sources. Our measurements with 310-nm, 10-50-nJ pulses of duration 100 is <tP < 2 ps from a frequency doubled, amplified CPM source show that they induce TPA in diamond strong enough for autocorrelation measurements within path lengths of 0.25 mm small enough that temporal broadening from group velocity dispersion is negligible and small enough that the diamond samples needed are available commercially at inexpensive prices. Because phase matching is not required, beam alignment with respect to crystalline axes is not critical. Consequently, this method provides simple, accurate, low cost autocorrelation measurements for nearly all currently available UV femtosecond sources.

© 1991 Optical Society of America

PDF Article
More Like This
Autocorrelation measurements of femtosecond ultraviolet pulses using two-photon conductivity in wide-gap dielectrics

Alexandre M. Streltsov, Jinendra K. Ranka, and Alexander L. Gaeta
CFF5 Conference on Lasers and Electro-Optics (CLEO:S&I) 1998

A Simple, Picojoule Sensitive Ultraviolet Autocorrelator Based on Two-Photon Conductivity in Sapphire

Kenneth J. Leedle, Karel E. Urbanek, and Robert L. Byer
STu4I.2 CLEO: Science and Innovations (CLEO:S&I) 2017

Two-photon absorption semiconductor waveguide autocorrelators for ultrashort pulse measurements

David A. Barrow, Frances R. Laughton, M. Mehdi Karkhanehchi, and John H. Marsh
CThM5 The European Conference on Lasers and Electro-Optics (CLEO/Europe) 1994

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.