Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies
  • Technical Digest (CD) (Optica Publishing Group, 2004),
  • paper CThD5

Laser Machining using Temporally Controlled Ultrafast Pulses

Open Access Open Access


This presentation describes a micromachining technique using temporally controlled amplified ultrafast laser pulses. The temporal control is achieved by modulating frequency components of the spatially dispersed ultrafast pulses. User-defined pulse bursts are synthesized, for which the pulse-to-pulse separation time, pulse energy, and pulse width are individually controlled. These pulse bursts are then focused on metal, semiconductor, and dielectric samples and the machining characteristics are noted. The experimental results show that there is a distinct effect of the pulse separation ranging from sub-picosecond to tens of picoseconds on the machining characteristics. The results of machining using ultrafast pulse bursts are correlated with the time scales of physical phenomena occurring during ultrafast laser matter interaction, including non-linear optical absorption, energy transfer, and the explosive type of phase transformation. Time-resolved experimental investigations of these processes are also performed to provide a better understanding of ultrafast laser machining using the pulse bursts.

© 2004 Optical Society of America

PDF Article
More Like This
Micromachining using Ultrafast Pulse Bursts

Ihtesham H. Chowdhury, Xianfan Xu, and Andrew M. Weiner
ThP1 Frontiers in Optics (FiO) 2003

Control of Ultrafast Laser Nanostructuring of Glasses using Temporal and Spatial Pulse Design

R. Stoian, K. Mishchik, C. Mauclair, P. K. Velpula, M. K. Bhuyan, J. P. Colombier, C. D’Amico, M. Zamfirescu, and G. Cheng
BW2D.6 Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) 2014

Ultrafast Laser Writing with Pulse Temporal Contrast Control

Huijun Wang, Yuhao Lei, Gholamreza Shayeganrad, and Peter G. Kazansky
cm_4_3 The European Conference on Lasers and Electro-Optics (CLEO/Europe) 2023

Select as filters

Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.