Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

All-optical pseudorandom bit sequence generator

Not Accessible

Your library or personal account may give you access

Abstract

The ability to perform all-optical digital information processing is one of the key requirements for future photonic networks. Recently, the use of semiconductor optical amplifier based all-optical interferometric switches [1] has allowed practical demonstrations of advanced functionality to be demonstrated. These have included a bit-serial regenerative optical memory which is capable of long term storage [2] and has the ability to restore the optical logic level [3]. Here we describe a further advance in all-optical digital functionality with a demonstration of an all-optical pseudorandom bit sequence (PRBS) generator. The all-optical PRBS comprises two coupled regenerative memories [2] which act as a time-of-flight shift register for optical pulses. A digital PRBS can be generated by applying the logical XOR function between the output of the register and a tap point and feeding the logical result back into the start of the register [4]. We use two TOAD all-optical switching gates [5] to create the all-optical PRBS architecture. One TOAD is used for the XOR function and the other acts as a wavelength converter and all-optical regenerator. The PRBS output depends on the number of pulses m in the shift register and the tap position n (n<m). At present, the experimental latency is several hundred bits at a IGHz clock rate and so we use multiples of lower length sequences in order to measure the performance of the design. We have experimentally demonstrated a maximal length 231-1 PRBS ({m,n}={713,552} ≡ 23 x {m,n}={31,24}) and also sub-maximal sequences. The figure below shows a digitally sampled part of the maximal 231-1 PRBS. The apparent amplitude modulation of the pulses is an artefact of the relatively low sampling rate (400Msamples/s). We were only able to record short temporal sequences since the repeat period of the PRBS is ~50s.

© 1998 IEEE

PDF Article
More Like This
Optical Computer for Pseudorandom Sequence Identification

Steven Cartwright
WB6 Optical Computing (IP) 1985

Repetition Rate Multiplication of Pseudorandom Bit Sequences bused on TOADs

Zhenchao Sun, Zhi Wang, Chongqing Wu, Fu Wang, Guodong Liu, Qing Lin, and Yangtian Jian
ATh3A.69 Asia Communications and Photonics Conference (ACP) 2014

All-optical regenerative memory with full read/write capability

A. J. Poustie, A. E. Kelly, K. J. Blow, and R. J. Manning
NThB.3 Nonlinear Guided Waves and Their Applications (NP) 1998

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.