Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Discretized Coupled-mode Theory for Fiber Grating Analysis

Not Accessible

Your library or personal account may give you access

Abstract

Fiber gratings have invoked intense research attention in recent years. The imprinted grating structures in fiber couple a propagating fundamental core-mode to other modes for resonant wavelengths and hence produce excellent wavelength filtering properties. To enhance the properties according to applications, a lot of grating structures are imposed in fibers. For example, phase-shifted ones, apodized ones, chirped ones, and so forth are applied to the grating structures for both reflection and transmission gratings. For the grating structure analysis, conventional coupled-mode theory and fundamental matrix theory [1] have good agreements with experimental results for almost periodic grating structures. However, the theories could not resolve the grating structures into less than grating periods, since they are based on a Fourier series representation for the grating structure. Even more, in the case that the whole grating length is not long enough compared to grating period or in the case that there exists no periodicity in the grating structure, its profile should be represented by not Fourier series but Fourier integral. These problems can be overcome by the discretized coupled-mode theory proposed in this paper. This method represents the grating structure as it is by discretizations along the structure. Hence, it can analyze arbitrary grating structures and resolve them into less than grating period. For example, if the discretization number is one hundred for the 500 nm fundamental grating period, then Nyquist theorem expects that the analysis should have 10 nm resolution for the grating structure. According to the grating structure variations, the discretization can be adjusted. Therefore, a precise analysis can be obtained no matter how complex the grating structure is. In this scheme, the nonlinear property of fiber grating can be considered easily. Together with Fourier transform analysis, the grating nonlinear response [2] including fiber grating soliton problems can be analyzed with high precision.

© 1998 IEEE

PDF Article
More Like This
Analysis of a multimode-fiber specklegram sensor by using the mode-coupling theory

Francis T. S. Yu, Jianzhong Zhang, and Shizhuo Yin
ThII.4 OSA Annual Meeting (FIO) 1993

Mode Transmission Analysis of Tapered Fiber Based on Coupled Local Mode Theory

Siyu Chen, Huiyi Guo, Zhi Wang, and Yange Liu
M4A.196 Asia Communications and Photonics Conference (ACP) 2019

Coupled-mode equations for deep quadratically nonlinear gratings

Awdah Arraf and C. Martijn de Sterke
NSNPS.P7 Nonlinear Guided Waves and Their Applications (NP) 1998

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.