Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • CLEO/Europe and EQEC 2009 Conference Digest
  • (Optica Publishing Group, 2009),
  • paper CG4_1

Laser-driven ultra-thin foils used as relativistic mirrors

Not Accessible

Your library or personal account may give you access

Abstract

The generation of laser-driven dense relativistic electron layers from ultra-thin foils and their use for coherent Thomson backscattering is discussed, applying analytic theory and one-dimensional particle-in-cell simulation [1]. The blow-out regime is explored in which all foil electrons are separated from ions by direct laser action. The electrons follow the light wave close to its leading front. Single electron solutions are applied to initial acceleration, phase switching, and second-stage boosting. Coherently reflected light shows Doppler-shifted spectra, chirped over several octaves. The Doppler shift is found γx2=1/(1βx2), where βx is the electron velocity component in normal direction of the electron layer which is also the direction of the driving laser pulse. Due to transverse electron momentum py, the Doppler shift by 4γx2=4γ2/[1+(py2/mc)2]2γ is significantly smaller than full shift of 4γ2. Methods to turn py → 0 and to recover the full Doppler shift are proposed and verified by 1D-PIC simulation. These methods open new ways to design intense single attosecond pulses. We also present an analytical formula for the reflectivity [2] and improved results for foil acceleration [3], based on the analytical theory of Kulagin et al. [4].

© 2009 IEEE

PDF Article
More Like This
Laser acceleration in the radiation-pressure-regime from ultra-thin polymer foils

B. Aurand, J. Bierbach, S. Herzer, O. Jäckel, S. Kuschel, J. Polz, C. Rödel, H. Zhao, P. Gibbon, A. Karmakar, B. Elkin, G.G. Paulus, M.C. Kaluza, and T. Kühl
JTh3I.2 CLEO: Applications and Technology (CLEO:A&T) 2012

Enhancement of Laser-Driven Proton Beams Using Nanostructured Solid Foils

Simon Vallières, Massimiliano Scisciò, Simona Veltri, Marianna Barberio, Emmanuel d’Humières, and Patrizio Antici
HM3A.6 High Intensity Lasers and High Field Phenomena (HILAS) 2018

Coherent Diffractive Imaging of Laser-Driven Plasma Dynamics in Thin Foils

N. Rothe, C. Merschjann, H. Bassen, F. Fennel, T. Fennel, and S. Lochbrunner
UTh4A.43 International Conference on Ultrafast Phenomena (UP) 2016

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.