Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • CLEO/Europe and EQEC 2011 Conference Digest
  • OSA Technical Digest (CD) (Optica Publishing Group, 2011),
  • paper CM2_1

Ultrafast Laser Micro/nano Processing for Microfluidic and Tissue Engineering Apllications

Not Accessible

Your library or personal account may give you access


This paper reviews our work on the application of ultrafast pulsed lasers for the biomimetic micro/nano processing of materials surfaces and controlling materials properties via this process. A unique aspect of this approach is that the material modifications can occur over many different length scales, adding complexity to the surface and a new dimension to surface optimization. As a result, direct irradiation of materials by ultrafast laser pulses often induces modifications leading to complex micro- and nano- scale surface structures, which are often found to have different and by far superior properties to those of the bulk materials. It is shown that the artificial surfaces obtained by femtosecond (fs) laser processing of Si in reactive gas atmosphere exhibit roughness at both micro- and nano- scales that mimics the hierarchical morphology of natural surfaces[1]. Along with the spatial control of the topology, defining surface chemistry provides materials exhibiting notable wetting characteristics which are potentially useful for open microfluidic applications. Depending on the functional coating deposited on the laser patterned structures we can achieve artificial surfaces that are: (a) of extremely low surface energy, thus water repellent and self-cleaned[1]; (b) responsive, i.e show the ability to change their surface energy in response to different external stimuli such as light, electric field and pH [2,3]. The implementation of laser engineered hierarchical surfaces for the development of biomimetic tissue scaffolds is additionally presented. Cell culture experiments performed with the fibroblast NIH/3T3 cell line [4] as well as with primary neuronal cultures[5] showed that it is possible to preferentially tune cell adhesion and growth, through choosing proper combinations of surface topography and chemistry. Furthermore combinations of the scaffolds obtained with well-defined biological nanostructures in a “scaffold on scaffold” format are investigated. It is found that cell adhesion properties can be effectively tuned by chemical functionalization of the 3D structures obtained with well-defined cell-binding peptides, for example Arg–Gly–Asp–Cys (RGDC). It is concluded that the laser textured 3D micro/nano Si surfaces with controllability of roughness ratio and surface chemistry can advantageously serve as a novel means to elucidate the 3D cell-scaffold interactions for tissue engineering applications.

© 2011 Optical Society of America

PDF Article
More Like This
Direct Laser Texturing of Biomimetic Surfaces for Neural Tissue Engineering

E. Stratakis, Ch. Simitzi, A. Ranella, P. Eustathopoulos, I. Pediaditakis, I. Charalampopoulos, I. Athanasakis, A. Gravanis, and C. Fotakis
CM_2_2 The European Conference on Lasers and Electro-Optics (CLEO_Europe) 2013

Direct Laser Writing of Polylactide 3D Scaffolds for Neural Tissue Engineering Applications

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, C. Fotakis, M. Farsari, and F. Claeyssens
CM1_4 The European Conference on Lasers and Electro-Optics (CLEO_Europe) 2011

Laser microstructured 3D polymeric biocompatible implants

Mangirdas Malinauskas, Daiva Baltriukiene, Antanas Kraniauskas, Paulius Danilevicius, Evaldas Balciunas, Albertas Zukauskas, Vytautas Purlys, Raimondas Sirmenis, Virginija Bukelskiene, Roaldas Gadonas, Vytautas Sirvydis, and Algis Piskarskas
CLEB4_1 The European Conference on Lasers and Electro-Optics (CLEO_Europe) 2011


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription

Select as filters

Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved