Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference
  • (Optica Publishing Group, 2017),
  • paper CH_P_26

Faraday Rotation Spectroscopy Using an Optical Frequency Comb

Not Accessible

Your library or personal account may give you access

Abstract

The mid-infrared (MIR) part of the optical spectrum (3-12 μm) houses the fundamental absorption bands of a multitude of environmentally important molecules, but the abundance of water absorption often causes interference with the target species and makes concentration measurement inaccurate. The broad spectral coverage of optical frequency comb spectroscopy (OFCS) provides access to entire ro-vibrational bands and allows more accurate concentration quantification and retrieval of sample temperature. To further improve detection sensitivity of paramagnetic species in the presence of interfering species, we combine a MIR optical frequency comb with the Faraday rotation spectroscopy (FRS) technique [1], which is insensitive to interferences from diamagnetic molecules, such as H2O, CO2, and CO. In FRS, the rotation of the polarization induced by an external magnetic field in the vicinity of paramagnetic molecular transitions is translated to an intensity change by the use of a polarization analyzer, which effectively removes the influence of any non-paramagnetic species. In the proof of principle demonstration of OFC-FRS we detect nitric oxide (NO) in the presence of water at 5.3 μm using a Fourier transform spectrometer.

© 2017 IEEE

PDF Article
More Like This
Optical Frequency Comb Faraday Rotation Spectroscopy

Alexandra C. Johansson, Jonas Westberg, Gerard Wysocki, and Aleksandra Foltynowicz
JW2A.165 CLEO: Applications and Technology (CLEO:A&T) 2018

Optical Frequency Comb Faraday Rotation Spectroscopy

Jonas Westberg, Alexandra C. Johansson, Gerard Wysocki, and Aleksandra Foltynowicz
FM4B.3 Fourier Transform Spectroscopy (FTS) 2018

HO2 Detection in a Photolysis Reactor Using Faraday Rotation Spectroscopy

Chu C. Teng, Chao Yan, Aric Rousso, Tim Chen, Yiguang Ju, and Gerard Wysocki
ATh3P.1 CLEO: Applications and Technology (CLEO:A&T) 2018

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.