Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference
  • OSA Technical Digest (Optica Publishing Group, 2019),
  • paper cm_8_6

Laser engineered surface structures for custom design of secondary electron yield

Not Accessible

Your library or personal account may give you access

Abstract

Secondary Electron Yield (SEY) [3, 5] occurs in a system when a primary electron impinges a material’s surface and induces the emission of a 1st and potentially 2nd generation secondary electrons (see Figure 1, Left). The total number of secondary electrons per primary electron is the SEY. This phenomenon forms a highly challenging problem in many systems, for example in particle accelerators, where significant levels of SEY form as an electron cloud and can perturbate the circulating beams and generate a high level of heat load to be absorbed by cooling and cryogenics. The Large Hadron Collider (LHC) has a 54-km beam pipe [1] in which copper-laminated steel beam-screens are placed in order to shield the beam pipes from heat loads, but inherently result in unwanted SEY. As such, the development of methods which mitigate the SEY are increasingly appealing [2], including surface texturing, shaping the geometry and orientation of patterns etched into the surfaces [3], and carbon-coating of the interior of the beam pipes in the Super Proton Synchrotron (SPS) [4]. Previously we have shown that nanosecond pulsed laser treatment of copper surfaces at 532 nm could significantly increase the optical absorbance of the surface [6], and furthermore reduce the SEY to close to 1 [7]. More recently we demonstrated that surface structures produced by a picosecond pulsed laser at 532nm exhibited SEY values below 1 and were successfully tested in a dipole magnet in the Super Proton Synchrotron (SPS) accelerator at CERN [8].

© 2019 IEEE

PDF Article
More Like This
Surface Structure Modelling for Laser-Assisted Reduction of SEY

Amin Din, Robin Uren, Stefan Wackerow, and Amin Abdolvand
cm_p_30 The European Conference on Lasers and Electro-Optics (CLEO/Europe) 2023

Integration and test of pulsed laser system for surface treatment of vacuum pipes at the Large Hadron Collider

A. K. Reascos Portilla, E. Bez, M. Taborelli, and M. Himmerlich
JW3A.17 Advanced Solid State Lasers (ASSL) 2022

High Performance Thermal Emitters Based on Laser Engineered Surfaces

Svetlana A. Zolotovskaya, Stefan Wackerow, Holger Neupert, Michael J. Barnes, Lorena V. Cid, Benoit Teissandier, and Amin Abdolvand
cm_8_4 The European Conference on Lasers and Electro-Optics (CLEO/Europe) 2019

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.