Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Femtosecond laser processing of materials

Not Accessible

Your library or personal account may give you access


Chemical bonding, phase transitions, and surface processes occur on timescales comparable to the natural oscillation periods of atoms and molecules, in the range of femtoseconds (1 fs =10–15 s) to picoseconds (1 ps = 10–12 s). Advances in the generation of ultrashort laser pulses in the past two decades have made it possible to directly observe these fundamental processes. These advances have taken us from the picosecond timescale a generation ago, to the femtosecond timescale in the past decade, and recently into the attosecond (1 as = 10–18 s) regime. Materials science, interdisciplinary by nature, has benefited from these advances because recent studies, ranging from probing atomistic processes in model materials, to real-time diffraction of lattices and to ultrafast laser processing of materials are furthering our understanding of time-dependent processes in materials. [1] In this tutorial presentation, I will review recent work involving the interaction of femtosecond laser pulses with materials. I will discuss the fundamental processes involved and a number of applications, classifying the work into two parts: the interaction with transparent materials (bulk femtosecond micromachining) and interaction with absorbing materials (femtosecond surface structuring and hyperdoping).

© 2014 Optical Society of America

PDF Article
This paper was not presented at the conference
Select as filters

Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.