Abstract

We demonstrate room temperature cavity-coupling between a single GeV center in a micron-thick diamond membrane and a high-finesse fiber cavity. This system is a milestone towards the creation of an efficient spin-photon interface using novel defect centers in diamond.

© 2019 The Author(s)

PDF Article
More Like This
Plasmonic Bragg Cavity-Enhanced Emission from Single Germanium Vacancy Centers in Nanodiamonds

Shailesh Kumar, Cuo Wu, Y. H. Kan, Liudmila F. Kulikova, Valery A. Davydov, Viatcheslav N. Agafonov, and Sergey I. Bozhevolnyi
QW6A.7 Quantum 2.0 (QUANTUM) 2020

Silicon-Vacancy Centers in a single crystal diamond membrane as efficient spin photon interface

Stefan Häußler, Richard Waltrich, Gregor Bayer, and Alexander Kubanek
82 Diamond Photonics - Physics, Technologies and Applications (DP) 2019

Strong Cavity Enhancement of Spontaneous Emission from Silicon-Vacancy Centers in Diamond

Jingyuan Linda Zhang, Shuo Sun, Michael J. Burek, Constantin Dory, Yan-Kai Tzeng, Kevin A. Fischer, Yousif Kelaita, Konstantinos G. Lagoudakis, Marina Radulaski, Zhi-Xun Shen, Nicholas A. Melosh, Steven Chu, Marko Lončar, and Jelena Vučković
FTu3H.5 CLEO: QELS_Fundamental Science (CLEO_QELS) 2018

References

  • View by:

  1. E. Togan et al., “Quantum Entanglement Between an Optical Photon and a Solid-state Spin Qubit”, Nature 466, 730 (2010).
    [Crossref]
  2. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond,” Phys. Rev. Lett. 182, 043604 (2012).
    [Crossref]
  3. H. Bernien et al., “Heralded Entanglement Between Solid-state Qubits Separated by Three Metres.”, Nature 497, 86 (2013).
    [Crossref]
  4. W. Pfaff et al., “Unconditional Quantum Teleportation Between Distant Solid-state Quantum Bits”, Science 345, 532 (2014).
    [Crossref]
  5. P. C. Maurer et al., “Room-Temperature Quantum Bit Memory Exceeding One Second”, Science 336, 1283 (2012).
    [Crossref]
  6. N. Kalb et al., “Entanglement Distillation Between Solid-state Quantum Network Nodes.,” Science 356, 928 (2017).
    [Crossref]
  7. P. C. Humphreys et al., “Deterministic Delivery of Remote Entanglement on a Quantum Network,” Nature 558, 268 (2018).
    [Crossref]
  8. J. Benedikter et al., “Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond”, Phys. Rev. Appl. 7, 024031 (2017).
    [Crossref]
  9. P. Siyushev et al., “Optical and Microwave Control of Germanium-Vacancy Center Spins in Diamond,” Phys. Rev. B 96, 081201 (2017).
    [Crossref]
  10. D. D. Sukachev et al. “Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout,” Phys. Rev. Lett. 119, 223602 (2017).
    [Crossref]
  11. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A Fiber Fabry–Perot Cavity with High Finesse,” New J. Phys. 12, 065038 (2010).
    [Crossref]
  12. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in iamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
    [Crossref]
  13. T. Grange et al., “Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters,” Phys. Rev. Lett. 114, 193601 (2015).
    [Crossref]

2018 (1)

P. C. Humphreys et al., “Deterministic Delivery of Remote Entanglement on a Quantum Network,” Nature 558, 268 (2018).
[Crossref]

2017 (4)

J. Benedikter et al., “Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond”, Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

P. Siyushev et al., “Optical and Microwave Control of Germanium-Vacancy Center Spins in Diamond,” Phys. Rev. B 96, 081201 (2017).
[Crossref]

D. D. Sukachev et al. “Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

N. Kalb et al., “Entanglement Distillation Between Solid-state Quantum Network Nodes.,” Science 356, 928 (2017).
[Crossref]

2015 (1)

T. Grange et al., “Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref]

2014 (1)

W. Pfaff et al., “Unconditional Quantum Teleportation Between Distant Solid-state Quantum Bits”, Science 345, 532 (2014).
[Crossref]

2013 (2)

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in iamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

H. Bernien et al., “Heralded Entanglement Between Solid-state Qubits Separated by Three Metres.”, Nature 497, 86 (2013).
[Crossref]

2012 (2)

P. C. Maurer et al., “Room-Temperature Quantum Bit Memory Exceeding One Second”, Science 336, 1283 (2012).
[Crossref]

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond,” Phys. Rev. Lett. 182, 043604 (2012).
[Crossref]

2010 (2)

E. Togan et al., “Quantum Entanglement Between an Optical Photon and a Solid-state Spin Qubit”, Nature 466, 730 (2010).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A Fiber Fabry–Perot Cavity with High Finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Albrecht, R.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in iamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Becher, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in iamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Benedikter, J.

J. Benedikter et al., “Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond”, Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Bernien, H.

H. Bernien et al., “Heralded Entanglement Between Solid-state Qubits Separated by Three Metres.”, Nature 497, 86 (2013).
[Crossref]

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond,” Phys. Rev. Lett. 182, 043604 (2012).
[Crossref]

Bommer, A.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in iamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Childress, L.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond,” Phys. Rev. Lett. 182, 043604 (2012).
[Crossref]

Colombe, Y.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A Fiber Fabry–Perot Cavity with High Finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Deutsch, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in iamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A Fiber Fabry–Perot Cavity with High Finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Grange, T.

T. Grange et al., “Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref]

Hänsch, T. W.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A Fiber Fabry–Perot Cavity with High Finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Hanson, R.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond,” Phys. Rev. Lett. 182, 043604 (2012).
[Crossref]

Humphreys, P. C.

P. C. Humphreys et al., “Deterministic Delivery of Remote Entanglement on a Quantum Network,” Nature 558, 268 (2018).
[Crossref]

Hunger, D.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A Fiber Fabry–Perot Cavity with High Finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Kalb, N.

N. Kalb et al., “Entanglement Distillation Between Solid-state Quantum Network Nodes.,” Science 356, 928 (2017).
[Crossref]

Markham, M.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond,” Phys. Rev. Lett. 182, 043604 (2012).
[Crossref]

Maurer, P. C.

P. C. Maurer et al., “Room-Temperature Quantum Bit Memory Exceeding One Second”, Science 336, 1283 (2012).
[Crossref]

Pfaff, W.

W. Pfaff et al., “Unconditional Quantum Teleportation Between Distant Solid-state Quantum Bits”, Science 345, 532 (2014).
[Crossref]

Reichel, J.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in iamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A Fiber Fabry–Perot Cavity with High Finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Robledo, L.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond,” Phys. Rev. Lett. 182, 043604 (2012).
[Crossref]

Siyushev, P.

P. Siyushev et al., “Optical and Microwave Control of Germanium-Vacancy Center Spins in Diamond,” Phys. Rev. B 96, 081201 (2017).
[Crossref]

Steinmetz, T.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A Fiber Fabry–Perot Cavity with High Finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Sukachev, D. D.

D. D. Sukachev et al. “Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

Togan, E.

E. Togan et al., “Quantum Entanglement Between an Optical Photon and a Solid-state Spin Qubit”, Nature 466, 730 (2010).
[Crossref]

Twitchen, D.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond,” Phys. Rev. Lett. 182, 043604 (2012).
[Crossref]

Nature (3)

H. Bernien et al., “Heralded Entanglement Between Solid-state Qubits Separated by Three Metres.”, Nature 497, 86 (2013).
[Crossref]

P. C. Humphreys et al., “Deterministic Delivery of Remote Entanglement on a Quantum Network,” Nature 558, 268 (2018).
[Crossref]

E. Togan et al., “Quantum Entanglement Between an Optical Photon and a Solid-state Spin Qubit”, Nature 466, 730 (2010).
[Crossref]

New J. Phys (1)

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A Fiber Fabry–Perot Cavity with High Finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Phys. Rev. Appl (1)

J. Benedikter et al., “Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond”, Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Phys. Rev. B (1)

P. Siyushev et al., “Optical and Microwave Control of Germanium-Vacancy Center Spins in Diamond,” Phys. Rev. B 96, 081201 (2017).
[Crossref]

Phys. Rev. Lett (4)

D. D. Sukachev et al. “Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in iamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

T. Grange et al., “Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref]

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond,” Phys. Rev. Lett. 182, 043604 (2012).
[Crossref]

Science (3)

W. Pfaff et al., “Unconditional Quantum Teleportation Between Distant Solid-state Quantum Bits”, Science 345, 532 (2014).
[Crossref]

P. C. Maurer et al., “Room-Temperature Quantum Bit Memory Exceeding One Second”, Science 336, 1283 (2012).
[Crossref]

N. Kalb et al., “Entanglement Distillation Between Solid-state Quantum Network Nodes.,” Science 356, 928 (2017).
[Crossref]