Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Computational analysis of light scattering from collagen fiber networks

Not Accessible

Your library or personal account may give you access

Abstract

Neoplastic progression in epithelial tissues is accompanied by structural and morphological changes in the stromal collagen matrix. We used the Finite-Difference Time-Domain (FDTD) method, a popular computational technique for full-vector solution of complex problems in electromagnetics, to establish a relationship between structural properties of collagen fiber networks and light scattering, and to analyze how neoplastic changes alter stromal scattering properties. To create realistic collagen network models, we acquired optical sections from the stroma of fresh normal and neoplastic oral cavity biopsies using fluorescence confocal microscopy. These optical sections were then processed to construct three-dimensional collagen networks of different sizes as FDTD model input. Image analysis revealed that volume fraction of collagen fibers in the stroma decreases with neoplastic progression, and statistical texture features computed suggest that fibers tend to be more disconnected in neoplastic stroma. The FDTD modeling results showed that neoplastic fiber networks have smaller scattering cross-sections compared to normal networks of the same size, whereas high-angle scattering probabilities tend to be higher for neoplastic networks. Characterization of stromal scattering is expected to provide a basis to better interpret spectroscopic optical signals and to develop more reliable computational models to describe photon propagation in epithelial tissues.

© 2007 SPIE

PDF Article
More Like This
Morphological and molecular analysis of the collagen fibers in inflammatory process

Luis Felipe das Chagas e Silva de Carvalho, Mônica Ghislaine Oliveira Alves, Carlos Alexandre Soares, Janete Dias Almeida, and Herculano da Silva Martinho
808712 European Conference on Biomedical Optics (ECBO) 2011

Detection of Fresh Cervical Tissue Autofluorescence with Laser Scanning Confocal Microscopy

Ina Pavlova, Rebekah Drezek, Kostantin Sokolov, Michele Follen, and Rebecca Richards-Kortum
TuC2 Biomedical Topical Meeting (BIOMED) 2002

Numerical analysis of dysplasia-associated changes in depth-dependent light scattering profile of cervical epithelium

Dizem Arifler, Calum MacAulay, Michele Follen, and Martial Guillaud
879809 European Conference on Biomedical Optics (ECBO) 2013

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.