Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Medical Laser Applications and Laser-Tissue Interactions VI
  • SPIE Proceedings (Optica Publishing Group, 2013),
  • paper 88030H

Selective ablation of WHHLMI rabbit atherosclerotic plaque by quantum cascade laser in the 5.7 μm wavelength range for less-invasive laser angioplasty

Not Accessible

Your library or personal account may give you access

Abstract

We investigated the potential of a compact and high-power quantum cascade laser (QCL) in the 5.7 μm wavelength range for less-invasive laser angioplasty. Atherosclerotic plaques consist mainly of cholesteryl esters. Radiation at a wavelength of 5.75 μm is strongly absorbed in C=O stretching vibration mode of cholesteryl esters. Our previous study achieved to make cutting differences between a normal artery and an atherosclerotic lesions using nanosecond pulsed laser by difference-frequency generation (DFG laser) at the wavelength of 5.75 μm. For applying this technique to clinical treatment, a compact laser device is required. In this study, QCL irradiation effects to a porcine normal aorta were compared with DFG laser. Subsequently, QCL irradiation effects on an atherosclerotic aorta of myocardial infarction-prone Watanabe heritable hyperlipidemic rabbit (WHHLMI rabbit) and a normal rabbit aorta were observed. As a result, the QCL could make cutting differences between the rabbit atherosclerotic and normal aortas. On the other hand, the QCL induced more thermal damage to porcine normal aorta than the DFG laser at the irradiation condition of comparable ablation depths. In conclusion, the possibility of less-invasive and selective treatment of atherosclerotic plaques using the QCL in the 5.7 μm wavelength range was revealed, although improvement of QCL was required to prevent the thermal damage of a normal artery.

© 2013 SPIE

PDF Article
More Like This
Selective Treatment of Atherosclerotic Plaques Using Nanosecond Pulsed Laser with a Wavelength of 5.75 μm for Less-invasive Laser Angioplasty

K. Ishii, H. Tsukimoto, H. Hazama, and K. Awazu
7373_1E European Conference on Biomedical Optics (ECBO) 2009

Application of a Quantum Cascade Laser in the 5.7 μm Wavelength Range for Less-Invasive Laser Treatment of Atherosclerotic Plaque

Keisuke Hashimura, Katsunori Ishii, Naota Akikusa, Tadataka Edamura, Harumasa Yoshida, and Kunio Awazu
17a_D4_10 JSAP-OSA Joint Symposia (JSAP) 2013

Ultrafast laser ablation for targeted atherosclerotic plaque removal

Thomas Lanvin, Donald B. Conkey, Laurent Descloux, Aurelien Frobert, Jeremy Valentin, Jean-Jacques Goy, Stéphane Cook, Marie-Noelle Giraud, and Demetri Psaltis
95420Z European Conference on Biomedical Optics (ECBO) 2015

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.