Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference
  • (Optica Publishing Group, 2017),
  • paper EB_3_2

Experimental Quantum Hamiltonian Learning using a silicon photonic chip and a nitrogen-vacancy electron spin in diamond

Not Accessible

Your library or personal account may give you access

Abstract

The efficient characterization and validation of the underlying model of a quantum physical system is a central challenge in the development of quantum devices and for our understanding of foundational quantum physics. However, the impossibility to efficiently predict the behaviour of complex quantum models on classical machines makes this challenge to be intractable to classical approaches. Quantum Hamiltonian Learning (QHL) [1,2] combines the capabilities of quantum information processing and classical machine learning to allow the efficient characterisation of the model of quantum systems. In QHL the behaviour of a quantum Hamiltonian model is efficiently predicted by a quantum simulator, and the predictions are contrasted with the data obtained from the quantum system to infer the system Hamiltonian via Bayesian methods.

© 2017 IEEE

PDF Article
More Like This
Learning nitrogen-vacancy electron spin dynamics on a silicon quantum photonic simulator

J. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, A. Laing, J. G. Rarity, J. L. O’Brien, and M. G. Thompson
FTu1F.5 CLEO: QELS_Fundamental Science (CLEO:FS) 2017

Towards practical characterization of quantum systems with quantum Hamiltonian learning

R. Santagati, J. Wang, S. Paesani, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson
FTh3E.7 Frontiers in Optics (FiO) 2017

Experimental demonstration of a quantum model learning agent

Antonio A. Gentile, Brian Flynn, Sebastian Knauer, Nathan Wiebe, Stefano Paesani, Christopher E. Granade, John G. Rarity, Raffaele Santagati, and Anthony Laing
FTu8D.2 Frontiers in Optics (FiO) 2020

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.