Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference
  • OSA Technical Digest (Optica Publishing Group, 2019),
  • paper eb_4_6

Optical d-level frequency-time-based cluster states

Not Accessible

Your library or personal account may give you access

Abstract

Cluster states, a specific class of multi-partite entangled states, are of particular importance for quantum science, as such systems are equivalent to the realization of one-way (or measurement-based) quantum computers [1]. In this scheme, algorithms are implemented through high-fidelity measurements on the parties of the state [2]. While two-level (i.e. qubit) cluster states have been realized so far, increasing the number of particles to boost the computational resource comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to noise, restricting the realization of discrete cluster states to a record of eight qubits. In contrast, the demonstration of d-level (i.e. qudit) cluster states has the potential to i) increase quantum resources without modifying the number of particles; ii) enable the implementation of highly efficient computational protocols; iii) reduce the noise sensitivity of the states. Up till now, the realization of discrete d-level cluster states has not been shown in any quantum platform. We here demonstrate the realization of d-level cluster states, perform d-level one-way quantum processing operations on the states, and show that higher-dimensional forms of cluster states are more noise tolerant than lower dimensional realizations.

© 2019 IEEE

PDF Article
More Like This
D-dimensional frequency-time entangled cluster states with on-chip frequency combs

Michael Kues, Christian Reimer, Stefania Sciara, Piotr Roztocki, Mehedi Islam, Luis Romero Cortés, Yanbing Zhang, Bennet Fischer, Sébastien Loranger, Raman Kashyap, Alfonso Cino, Sai T. Chu, Brent E. Little, David J. Moss, Lucia Caspani, William J. Munro, José Azaña, and Roberto Morandotti
ITh2A.4 Integrated Photonics Research, Silicon and Nanophotonics (IPR) 2019

High-dimensional one-way quantum computation operations with on-chip optical d-level cluster states

Christian Reimer, Michael Kues, Stefania Sciara, Piotr Roztocki, Mehedi Islam, Luis Romero Cortés, Yanbing Zhang, Bennet Fischer, Sébastien Loranger, Raman Kashyap, Alfonso Cino, Sai T. Chu, Brent E. Little, David J. Moss, Lucia Caspani, William J. Munro, José Azaña, and Roberto Morandotti
FTh1A.4 CLEO: QELS_Fundamental Science (CLEO:FS) 2019

High-dimensional one-way quantum processing enabled by optical d-level cluster states

Michael Kues, Christian Reimer, Stefania Sciara, Piotr Roztocki, Mehedi Islam, Luis Romero Cortés, Yanbing Zhang, Bennet Fischer, Sébastien Loranger, Raman Kashyap, Alfonso Cino, Sai T. Chu, Brent E. Little, David J. Moss, Lucia Caspani, William J. Munro, José Azaña, and Roberto Morandotti
S2C.3 Quantum Information and Measurement (QIM) 2019

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.