Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference
  • OSA Technical Digest (Optica Publishing Group, 2019),
  • paper jsv_3_1

Quantum Measurement of a Mechanical Resonator At and Below the Standard Quantum Limit

Not Accessible

Your library or personal account may give you access

Abstract

Interferometric techniques to measure mechanical displacement are subject to constraints ultimately governed by quantum mechanics. In a “standard” measurement of a mechanically induced optical phase shift, there exists a trade-off between measurement imprecision and motion disturbance, known as standard quantum limit (SQL) [1]. For a mechanical resonator with susceptibility χm(Ω), this limit is SSQL(Ω) = ħ |χm(Ω)| (ħ reduced Planck constant), at any frequency Ω. In the last half-century, a number of systems, including advanced LIGO and ultracold atoms have progressed towards this limit, but excess sources of noise have yet prevented fully reaching the SQL. Here, we show measurements of an ultracoherent mechanical resonator performed at the SQL within 33% [2] and, for the first time, below the SQL by 1.5 dB[3]. The latter has been possible by a non-standard measurement scheme that explois quantum correlations between optical quadratures induced in the optomechanical device.

© 2019 IEEE

PDF Article
More Like This
Quantum Measurement of a Mechanical Resonator At and Below the Standard Quantum Limit

Massimiliano Rossi, David Mason, Junxin Chen, Yeghishe Tsaturyan, and Albert Schliesser
FM1A.3 CLEO: QELS_Fundamental Science (CLEO:FS) 2019

Measuring Motion Below the Standard Quantum Limit by Strong Optomechanical Quantum Correlations

Junxin Chen, David Mason, Massimiliano Rossi, Yeghishe Tsaturyan, and Albert Schliesser
S3C.5 Quantum Information and Measurement (QIM) 2019

Measuring nanomechanical motion with an imprecision below that at the standard quantum limit

G. Anetsberger, P. Verlot, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg
EA5_1 European Quantum Electronics Conference (EQEC) 2011

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved