Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Conference on Lasers and Electro-Optics/Europe (CLEO/Europe 2023) and European Quantum Electronics Conference (EQEC 2023)
  • Technical Digest Series (Optica Publishing Group, 2023),
  • paper ed_4_1

Measurement and Assignment of Hot-Band Methane Transitions Using Cavity-Enhanced Comb-Based Double-Resonance Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Accurate assignments of highly-excited molecular vibrational states are needed for the verification of theoretical predictions of high-temperature spectra observed in astrophysics and combustion environments. We previously demonstrated that optical-optical double resonance spectroscopy with a continuous wave (CW) pump and a frequency comb probe is a powerful tool for this purpose; it allows simultaneous measurement of multiple hot-band transitions from a selectively populated state with sub-Doppler resolution [1]. Using a 3.3 μm CW laser as a pump and a 1.67 μm comb as a probe, we detected previously unobserved transitions in the 3ν3 ← ν3 range of methane [2]. The sample was contained in a single-pass cell, and the comb probe spectra were measured using a Fourier transform spectrometer with comb-mode-limited resolution. Recently, we implemented an enhancement cavity for the comb probe that improved the absorption sensitivity by more than two orders of magnitude [3]. Here we use this cavity-enhanced system to measure 3ν3 ← ν3 methane transitions with much improved frequency and relative intensity accuracy, which allows unambiguous assignments of the final states using two independent methods.

© 2023 IEEE

PDF Article
More Like This
Measurement and Assignment of Hot-Band Methane Transitions with Sub-MHz Accuracy

Vinicius Silva de Oliveira, Isak Silander, Lucile Rutkowski, Grzegorz Soboń, Ove Axner, Kevin K. Lehmann, and Aleksandra Foltynowicz
SM3F.7 CLEO: Science and Innovations (CLEO:S&I) 2022

Cavity-Enhanced Frequency-Comb-Based Optical-Optical Double-Resonance Spectrometer

Andrea Rosina, Vinicius Silva de Oliveira, Isak Silander, Adrian Hjältén, Lucile Rutkowski, Grzegorz Soboń, Kevin K. Lehmann, and Aleksandra Foltynowicz
ed_p_4 European Quantum Electronics Conference (EQEC) 2023

Double-Resonance Spectroscopy of Methane Using a Comb Probe

Vinicius Silva de Oliveira, Isak Silander, Lucile Rutkowski, Alexandra C. Johansson, Grzegorz Soboń, Ove Axner, Kevin K. Lehmann, and Aleksandra Foltynowicz
ed_3_1 European Quantum Electronics Conference (EQEC) 2021

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.