Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2000 International Quantum Electronics Conference
  • Technical Digest Series (Optica Publishing Group, 2000),
  • paper QThG3

A Hamiltonian for cavity decay

Not Accessible

Your library or personal account may give you access

Abstract

The conventional way to treat cavity dissipation in quantum optics is by applying the system-reservoir approach. The small system consists of the quantized discrete modes of a fictitious perfect cavity. The reservoir is the external field described by continuous annihilation and creation operators for the modes of free-space. This conventional approach has been used since the early days of the laser [1]. The Hamiltonian that describes this approach became known as the Gardiner-Collett Hamiltonian [2]. Despite being useful in describing several phenomena in cavities with a high quality factor (Q), it is well known that this approach breaks down when the Q decreases. We have derived the Gardiner-Collett Hamiltonian from a rigorous modes of the “universe” expansion, as an approximation for high-Q, and obtained the coupling strength between the discrete cavity annihilation and creation operators (small system) and the continuous annihilation and creation operators of free-space (reservoir). It was often believed that this coupling strength should be independent of frequency of the free-space mode if the output mirror reflectivity does not depend on frequency within the frequency range of interest. We have found, however, that the coupling strength depends on the frequency even when the reflectivity is frequency independent. The physical consequence of this frequency dependence is that for short times compared to one cavity round-trip time, the reservoir (free-space) is no longer Markovian. Our explicit expression for this frequency dependent coupling strength unlocks this fast time non-Markovian regime that had been previously inaccessible within the Gardiner- Collett Hamiltonian. Finally, we also show how to generalize the Gardiner-Collett Hamiltonian to arbitrary quality factors. This generalized Hamiltonian can be applied to develop a full quantum theory of excess noise in lasers.

© 2000 IEEE

PDF Article
More Like This
Atomic decay rates in a dielectric medium: a test of the standard QED Hamiltonian

S.-T. HO and PREM KUMAR
QME6 International Quantum Electronics Conference (IQEC) 1990

Realizing Tight-binding Hamiltonians using Site-controlled Coupled Cavity Arrays

Abhi Saxena, Arnab Manna, Rahul Trivedi, and Arka Majumdar
FM3E.2 CLEO: Fundamental Science (CLEO:FS) 2023

Cascade atom in high-Q cavity: the spectrum for non-Markovian decay

B J Dalton and B M Garraway
CSuA20 Conference on Coherence and Quantum Optics (CQO) 2007

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.