Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest
  • OSA Technical Digest (CD) (Optica Publishing Group, 2009),
  • paper JMA1
  • https://doi.org/10.1364/FIO.2009.JMA1

Synthesizing Arbitrary Photon States in a Superconducting Resonator: the Quantum Digital to Analog Converter

Not Accessible

Your library or personal account may give you access

Abstract

Two-level systems, or qubits, afford complete quantum control using only classical electrical signals. Achieving the same degree of control over harmonic resonators and photons has remained elusive, due to their infinite number of equally spaced energy levels. We exploit our complete qubit control by using a superconducting phase qubit to pump microwave photons into a high-Q coplanar wave guide resonator and, subsequently, use the qubit to read out the resonator state. This scheme has previously allowed us to prepare and detect photon number states (Fock states [1]) in the resonator and to measure their decay. Using a generalization of a scheme developed by Law and Eberly [2], we can now create arbitrary quantum states of the photon field with up to approximately 10 photons [3]. We analyze the prepared states by directly mapping out the corresponding Wigner function, which is the phase-space equivalent of the density matrix, and provides a complete description of the quantum state. Movies of the decay of a variety of non-classical states show a loss of quantum coherence over the energy decay time of the resonator.

© 2009 APS DLS

PDF Article
More Like This
Measuring the quantum harmonic oscillator

Andrew N. Cleland
LWD3 Laser Science (LS) 2010

Photonic Analog-to-Digital Converters A Tutorial

George C. Valley
OMI1 Optical Fiber Communication Conference (OFC) 2009

Dynamic Range Improvement in Photonic Time-Stretch Analog-to-Digital Converter

Ali Motafakker-Fard, Shalabh Gupta, and Bahram Jalali
OMI2 Optical Fiber Communication Conference (OFC) 2009

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved