Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Deep-Learning-Based Virtual H&E Staining Using Total-Absorption Photoacoustic Remote Sensing (TA-PARS)

Not Accessible

Your library or personal account may give you access

Abstract

Deep learning-based virtual staining is applied to total-absorption photoacoustic remote sensing (TA-PARS) imaging, demonstrating virtual histological images with equivalent quality and contrast to histochemical staining.

© 2022 The Author(s)

PDF Article  |   Presentation Video
More Like This
Label-Free Histology with Total Absorption Photoacoustic Remote Sensing (TA-PARS)

Benjamin Ecclestone, Kevan Bell, Marian Boktor, Vlad Pekar, Deepak Dinakaran, John R. Mackey, and Parsin Haji Reza
MTu2A.4 Microscopy Histopathology and Analytics (Microscopy) 2022

Deep learning-based transformation of H&E stained tissue into special stains

Kevin de Haan, Yijie Zhang, Jonathan E. Zuckerman, Tairan Liu, Yair Rivenson, W. Dean Wallace, and Aydogan Ozcan
ATh2I.4 CLEO: Applications and Technology (CLEO:A&T) 2022

Multi-layer label-free H&E-like histology using ultraviolet scattering-augmented photoacoustic remote sensing microscopy

Nathaniel J.M. Haven, Matthew T. Martell, Brendyn D. Cikaluk, Brendon S. Restall, Ewan McAlister, Sveta Silverman, Lashan Peiris, Jean Deschenes, Xingyu Li, and Roger J. Zemp
MTu2A.2 Microscopy Histopathology and Analytics (Microscopy) 2022

Presentation Video

Presentation video access is available to:

  1. Optica Publishing Group subscribers
  2. Technical meeting attendees
  3. Optica members who wish to use one of their free downloads. Please download the article first. After downloading, please refresh this page.

Contact your librarian or system administrator
or
Log in to access Optica Member Subscription or free downloads


More Like This
Label-Free Histology with Total Absorption Photoacoustic Remote Sensing (TA-PARS)

Benjamin Ecclestone, Kevan Bell, Marian Boktor, Vlad Pekar, Deepak Dinakaran, John R. Mackey, and Parsin Haji Reza
MTu2A.4 Microscopy Histopathology and Analytics (Microscopy) 2022

Deep learning-based transformation of H&E stained tissue into special stains

Kevin de Haan, Yijie Zhang, Jonathan E. Zuckerman, Tairan Liu, Yair Rivenson, W. Dean Wallace, and Aydogan Ozcan
ATh2I.4 CLEO: Applications and Technology (CLEO:A&T) 2022

Multi-layer label-free H&E-like histology using ultraviolet scattering-augmented photoacoustic remote sensing microscopy

Nathaniel J.M. Haven, Matthew T. Martell, Brendyn D. Cikaluk, Brendon S. Restall, Ewan McAlister, Sveta Silverman, Lashan Peiris, Jean Deschenes, Xingyu Li, and Roger J. Zemp
MTu2A.2 Microscopy Histopathology and Analytics (Microscopy) 2022

Deep learning-enabled realistic virtual histology with ultraviolet scattering and photoacoustic remote sensing microscopy

Matthew T. Martell, Nathaniel J.M. Haven, Ewan A. McAlister, Brendon S. Restall, Sveta Silverman, Lashan Peiris, Benjamin A. Adam, Jean Deschenes, Xingyu Li, and Roger J. Zemp
MS4A.2 Microscopy Histopathology and Analytics (Microscopy) 2022

Ultraviolet photoacoustic remote sensing and scattering microscopy for CycleGAN-enabled realistic virtual histology

Matthew T. Martell, Nathaniel J.M. Haven, Ewan A. McAlister, Brendon S. Restall, Brendyn D. Cikaluk, Rohan Mittal, Benjamin A. Adam, Nadia Giannakopoulos, Lashan Peiris, Sveta Silverman, Jean Deschenes, Xingyu Li, and Roger J. Zemp
126310C European Conference on Biomedical Optics (ECBO) 2023

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.