Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient parallel algorithm for simulating wavelength-division-multiplexed dispersion-managed optical fiber systems

Not Accessible

Your library or personal account may give you access

Abstract

A wavelength-division-multiplexed (WDM) dispersion-managed (DM) optical fiber system is one of the key components of current development of ultrafast high-bit-rate optical communication lines. High capacity of optical transmission is achieved using both wavelength multiplexing and dispersion management (see e.g. Ref. [1, 2]). A dispersion-managed [3, 4, 5, 6] optical system is designed to create a low (or even zero) path-averaged dispersion by periodically alternating dispersion sign along an optical fiber that dramatically reduces pulse broadening. Second-order GVD (dispersion slope) effects and path-averaged GVD effects cause optical pulses in distinct WDM channels to move with different group velocities. Consequently modeling of WDM systems requires simulating a long time interval. Enormous computation resources are necessary to capture accurately the nonlinear interactions between channels which deteriorates bit-rate capacity. Here an efficient numerical algorithm is developed for massive parallel computation of WDM systems. The required computational time is inversely proportional to the number of parallel processors used. This makes feasible a full scale numerical simulation of WDM systems on a workstation cluster with a few hundred processors.

© 2002 Optical Society of America

PDF Article
More Like This
Wavelength-division-multiplexed bi-soliton transmission in dispersion-managed system

Takashi Inoue, Yasuhiro Yoshika, and Akihiro Maruta
NLMD57 Nonlinear Guided Waves and Their Applications (NP) 2002

Timing jitter of a strongly dispersion managed soliton in a wavelength-division-multiplexed system

Hiroto Sugahara and Akihiro Maruta
ThA4 Nonlinear Guided Waves and Their Applications (NP) 1999

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.