Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Strong Optical Nonlinearities and Ultrafast Carrier Dynamics in Luminescent and Nonluminescent Porous Silicon

Not Accessible

Your library or personal account may give you access

Abstract

Since the first experimental observation of efficient visible photoluminescence (PL) from porous silicon (PS) [1] this material has attracted much interest for its possible applications in all-silicon-based optoelectronics. Until now experimental studies of PS have mainly concerned PL, yielding information on the energy structure and population dynamics of the low-energy relaxed states in the material. Time-resolved nonlinear-transmission measurements can provide complementary information to conventional PL spectroscopy, revealing the structure of the higher-lying states and fast carrier dynamics in the initial stage after photoexcitation. In the present paper we report studies of the optical nonlinearities and ultrafast carrier dynamics in free-standing porous silicon films performed by femtosecond pump-probe experiment. The large photoinduced absorption observed in the spectral range 1.2–2.65 eV is attributed to molecular like complexes (clusters) which are most likely intrinsic to PS layers. Comparison of the transient absorption in samples of luminescent and nonluminescent PS shows that PL and photoinduced absorption originate from different species inside PS layers.

© 1996 Optical Society of America

PDF Article
More Like This
Ultrafast carrier dynamics in porous silicon

P. M. Fauchet, J. von Behren, K. B. Ucer, and Y. Kostoulas
QThG31 Quantum Electronics and Laser Science Conference (CLEO:FS) 1995

Multiphoton excitation of luminescence from porous silicon

RP Chin, D Kim, YR Shen, and V Petrova-Koch
WL14 International Quantum Electronics Conference (IQEC) 1996

Infrared-multiphoton-excited luminescence in porous silicon

R. P. Chin, Doseok Kim, V. Petrova-Koch, and Y. R. Shen
QTuD4 Quantum Electronics and Laser Science Conference (CLEO:FS) 1996

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.