Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pure-state certification by undoing Hamiltonian evolution leading to local thermalization

Not Accessible

Your library or personal account may give you access

Abstract

In a quantum-photonic experiment with an integrated quantum photonics network, we observe a quantum state locally evolve towards a thermal state. By undoing the evolution with the inverse network, we recover the input pure state.

© 2022 The Author(s)

PDF Article  |   Presentation Video
More Like This
Quantum photo-thermodynamics on a programmable photonic quantum processor

M. Correa Anguita, F. H. B. Somhorst, R. van der Meer, R. Schadow, H. J. Snijders, M. de Goede, B. Kassenberg, P. Venderbosch, C. Taballione, J. P. Epping, H. H. van den Vlekkert, J. F. F. Bulmer, J. Lugani, I. A. Walmsley, P. W. H. Pinkse, J. Eisert, N. Walk, and J. J. Renema
QTu3A.3 Quantum 2.0 (QUANTUM) 2022

Generation of highly-pure single-photon states at telecommunication wavelength

Akito Kawasaki, Kan Takase, Takefumi Nomura, Sigehito Miki, Hirotaka Terai, Masahiro Yabuno, Fumihiro China, Warit Asavanant, Mamoru Endo, Jun-ichi Yoshikawa, and Akira Furusawa
FM5B.6 Frontiers in Optics (FiO) 2022

High Fidelity 12-Mode Quantum Photonic Processor Operating at InGaAs Quantum Dot Wavelength

M. de Goede, H. J. Snijders, P. Venderbosch, B. Kassenberg, N. Kannan, D. Smith, C. Taballione, J. P. Epping, H. H. van den Vlekkert, and J.J. Renema
ITu4B.3 Integrated Photonics Research, Silicon and Nanophotonics (IPR) 2022

Presentation Video

Presentation video access is available to:

  1. Optica Publishing Group subscribers
  2. Technical meeting attendees
  3. Optica members who wish to use one of their free downloads. Please download the article first. After downloading, please refresh this page.

Contact your librarian or system administrator
or
Log in to access Optica Member Subscription or free downloads


More Like This
Quantum photo-thermodynamics on a programmable photonic quantum processor

M. Correa Anguita, F. H. B. Somhorst, R. van der Meer, R. Schadow, H. J. Snijders, M. de Goede, B. Kassenberg, P. Venderbosch, C. Taballione, J. P. Epping, H. H. van den Vlekkert, J. F. F. Bulmer, J. Lugani, I. A. Walmsley, P. W. H. Pinkse, J. Eisert, N. Walk, and J. J. Renema
QTu3A.3 Quantum 2.0 (QUANTUM) 2022

Generation of highly-pure single-photon states at telecommunication wavelength

Akito Kawasaki, Kan Takase, Takefumi Nomura, Sigehito Miki, Hirotaka Terai, Masahiro Yabuno, Fumihiro China, Warit Asavanant, Mamoru Endo, Jun-ichi Yoshikawa, and Akira Furusawa
FM5B.6 Frontiers in Optics (FiO) 2022

High Fidelity 12-Mode Quantum Photonic Processor Operating at InGaAs Quantum Dot Wavelength

M. de Goede, H. J. Snijders, P. Venderbosch, B. Kassenberg, N. Kannan, D. Smith, C. Taballione, J. P. Epping, H. H. van den Vlekkert, and J.J. Renema
ITu4B.3 Integrated Photonics Research, Silicon and Nanophotonics (IPR) 2022

High-dimensional Frequency Entanglement Certification

Meritxell Cabrejo Ponce, André A. L. M. Muniz, Marcus Huber, and Fabian Steinlechner
FF4I.4 CLEO: QELS_Fundamental Science (CLEO:FS) 2022

Quantum Networking Advantage with Graph States

Alexander Pickston, Jonathan Webb, Christopher Morrison, Massimiliano Proietti, Andrés Ulibarrena, Joseph Ho, Federico Grasselli, and Alessandro Fedrizzi
QM3B.5 Quantum 2.0 (QUANTUM) 2022

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.