Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser diagnostic density measurements of Hg(3P0,1,2) in a Hg-Ar discharge

Not Accessible

Your library or personal account may give you access

Abstract

Two laser-based techniques are used to measure absolute and radial density distributions for the 6(3p0,1,2) states of mercury in the positive column of a low pressure Hg-Ar dc discharge. In the first method, a pulsed dye laser beam (20 ns, 0.2-cm–1 bandwidth), traversing the discharge axially, is scanned through one of the 6(3 p 0,1,2)→ 7(3S1) transitions, depending on the lower state of interest. The transmitted signal is detected with a calibrated photodiode and the power loss on resonance is plotted as a function of nonresonant power. At sufficiently high powers, this power loss approaches a constant saturated value which is directly proportional to the initial number density of absorbers in the lower state. Relative density measurements are made by setting the power in the saturated regime and measuring this power loss as a function of radial position. Results are given for the three 3P states at Hg pressures of 1 and 7 mTorr and discharge currents of 80 and 400 mA. Absolute densities are established using a well-known interferometric technique known as the hook method.1 Using the same laser as described above, the dye laser is tuned through the 3P13S1 transition of interest, and the spectral separation of the interference hooks is used to determine the absolute density.

© 1989 Optical Society of America

PDF Article
More Like This
Excitation and optimization of the atomic xenon laser in Ar/Xe mixtures

MARK J. KUSHNER, MIEKO OHWA, and THOMAS J. MORATZ
THA4 Conference on Lasers and Electro-Optics (CLEO:S&I) 1989

High efficiency and high pressure operation of a vacuum ultraviolet F2 laser (157 nm) excited by an intense electric discharge

TATSUYA UEMATSU, MASAYUKI KAKEHATA, and MINORU OBARA
THC3 Conference on Lasers and Electro-Optics (CLEO:S&I) 1989

Stimulated Emission from Ar2 and Ne2 in Electrical Discharges with Supersonic Cooling

T. Efthimiopoulos, P. Dubé, B.P. Stoicheff, and R.I. Thompson
QPD22 Quantum Electronics and Laser Science Conference (CLEO:FS) 1989

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.