Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-gain InGaAs heterojunction phototransistor operating at 930 nm using resonant periodic absorption for surface-emitting laser logic devices

Not Accessible

Your library or personal account may give you access

Abstract

Using a new technique called resonant periodic absorption, we have achieved high-optical gain in InGaAs/GaAs heterojunction phototransistors (HPTs) for wavelengths at which GaAs substrates are transparent(>925 nm). These devices are promising for optoelectronic interconnect, optical-logic device, neural network, and lightwave communication uses. Specifically, these InGaAs HPTs are ideally suited for integration with InGaAs vertical cavity surface-emitting laser (VCSEL) diodes to produce monolithic surface-emitting laser logic (CELL) devices.1 Resonant periodic absorption is achieved in an asymmetric microresonator consisting of a strained layer InGaAs/GaAs HPT sandwiched between distributed Bragg reflectors. By aligning the optical intensity maxima with the InGaAs quantum wells in the collector region of the phototransistor, we are able to achieve high gain(>600 at a 4.0-V bias and a 50-mA collector current) at wavelengths >900 nm from a structure in which the absorption coefficient, aL, is only ~0.1. We describe the design, growth, and fabrication of a monolithic CELL consisting of an InGaAs/GaAs HPT and VCSEL operating at 930 nm. CELL devices are cascadable optical logic devices (smart pixels) in which incident light generates photocurrent in the phototransistor that is internally amplified and then used to drive the VCSEL above threshold. These devices will operate at a wavelength that is in the passband of the GaAs substrate and therefore avoid the problems associated with the removal of the substrate in AlGaAs/GaAs CELL structures operating in transmission.

© 1991 Optical Society of America

PDF Article
More Like This
Cascadable surface-emitting laser logic devices

G. R. Olbright, R. P. Bryan, K. Lear, G. Poirier, T. M. Brennan, Y. H. Lee, and J.L. Jewell
CMF1 Conference on Lasers and Electro-Optics (CLEO:S&I) 1991

Surface-Emitting Laser Logic

G. R. Olbright, R. P. Bryan, T. M. Brennan, K. Lear, G. E. Poirier, W. S. Fu, J. L. Jewell, and Y. H. Lee
ThC3 Photonic Switching (PS) 1991

Binary Arithmetic Using Optical Symbolic Substitution and Cascadable Surface-Emitting Laser Logic Devices

Julian Cheng, G. R. Olbright, and R. P. Bryan
MA3 Optical Computing (IP) 1991

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.