Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

A Fabry-Perot interferometer for atoms

Open Access Open Access

Abstract

Recent progress in atom optics has culminated in several demonstrations of atom interferometers. These rely on the passage of atoms through mechanical or light gratings and may be roughly characterized as Mach–Zehnder interferometers. In this communication, we propose a scheme to realize a Fabry–Perot interferometer for atoms. The mirrors are realized by the field gradient resulting from the spatial mode structure in optical or microwave cavities. When ultra- cold atoms impinge on such cavities, they experience quantum mechanical reflection and transmission that result in the appearance of longitudinal modes for the atomic wave function. We present a model of such a Fabry–Perot interferometer for two-level atoms. We discuss the intra-cavity matter–wave mode structure as well as the transmittivity and reflectivity characteristics of the interferometer. The potential generation of macroscopic quantum waves using such a device, as well as its potential as a sensitive photon detector, will be addressed.

© 1992 Optical Society of America

PDF Article
More Like This
Fiber Fabry-Perot interferometers

Toshihiko Yoshino and Yotaka Ohno
WL2 Optical Fiber Communication Conference (OFC) 1981

Fiber Fabry-Perot interferometer using side exposed fiber Bragg gratings

W. W. Morey, T. J. Bailey, W. H. Glenn, and G. Meltz
WA2 Optical Fiber Communication Conference (OFC) 1992

In-line Fiber Fabry-Perot Interferometer With High-Reflectance Internal Mirrors

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor
P8 Optical Fiber Sensors (OFS) 1992

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.