Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Chaos and Optical Bistability: Bifurcation Structure

Not Accessible

Your library or personal account may give you access

Abstract

The phase of the output light from a bistable optical cavity containing a nonlinear dielectric medium obeys the following differential equation with time delay: Although the equation of this class is familiar in various areas such as ecology, neurobiology, acoustics and study of electric circuit, the behavior of its solution has not been investigated in detail. In this paper we report the results of our recent numerical study of this equation. It is found that, with increase of parameter μ, which measures the intensity of the incident light, or delay tR, the solution of Eq. (1) exhibits transition from a stationary state to periodic and chaotic states. In the course of this transition, there appear successive bifurcations of a novel type, which form, so to call it, a hierarchy of coexisting periodic solutions: As μ is increased, the stationary solution becomes unstable at the first bifurcation point and breaks into a number of periodic ones. These periodic solutions form a set of higher-harmonics which can coexist with each other. With further increase of μ, each of these solutions further bifurcates into a new set of coexisting periodic solutions. Such a bifurcation takes place successively, causing an accelerative accumulation of coexisting periodic states and making the time evolution of the solution more and more complicated, until a chaotic state sets in. In the chaotic regime, the coexisting periodic states in turn coalesce successively into fewer sets and are finally reduced to a single chaotic state with totally complicated time evolution. This type of behavior, which has never been before in any other nonlinear system, appears generic in the class of Eq. (1).

© 1983 Optical Society of America

PDF Article
More Like This
Optical Bistability, Chaos in the Coherent Two Photon Processes:

G.S. Agarwal and Surendra Singh
WHa3 Optical Bistability (OBI) 1983

Chaos in Optical Bistability

M.W. Derstine, H.M. Gibbs, F.A. Hopf, and D.L. Kaplan
WC1 Optical Bistability (OBI) 1983

Self-Pulsing, Breathing and Chaos in Optical Bistability and the Laser with Injected Signal

L.A. Lugiato and L.M. Narducci
WHb2 Optical Bistability (OBI) 1983

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.