Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Optical Fiber Communications Conference
  • OSA Trends in Optics and Photonics (Optica Publishing Group, 2002),
  • paper ThC6

Ultra-high density AWGs composed of super-high ∆ PLCs

Not Accessible

Your library or personal account may give you access

Abstract

Planar lightwave circuits (PLCs) incorporating arrayed-waveguide gratings (AWGs) are excellent in terms of circuit density, design flexibility, multi-channeling and mass-production, and are widely deployed in optical networks.1 NTT and NEL developed such PLCs using GeO2-doped silica waveguides with a core-to-cladding index contrast ∆ of less than 0.8% and a minimum bending radius of 5 mm or more, taking account of the waveguide propagation loss and the coupling loss with conventional single-mode fiber (SMF). Table 1 summarizes the characteristics of silica waveguides with different ∆ values. The continuing demand for more broadband and cost-effective networks leads to larger scale and/or smaller size PLCs with a higher density. An increase in the index contrast ∆ can make it possible to upgrade PLC density due to the corresponding reduction in the minimum bending radius of a waveguide. From a practical viewpoint, NTT has been improving the methods it normally uses for fabricating GeO2-doped silica waveguides, and has recently achieved a low propagation loss of 0.05 dB/cm at a ∆ of 1.5%.2 By comparison with previously developed silica waveguides, these higher ∆ waveguides are referred to as super-high (SH) ∆ waveguides. In addition, we have realized a large scale AWG with 256 channels2 and a small size AWG module with low-loss SMF connection accomplished by fusion splicing a high-NA (numerical aperture) fiber and SMF.3 At present, we are developing even larger scale AWGs and low-loss SMF connection methods suitable for high-channel-count AWGs. This paper reviews our recent progress on SH ∆ PLC technologies focusing on ultra-high density AWGs and SMF connection methods using spot size converters (SSCs) in PLCs.

© 2002 Optical Society of America

PDF Article
More Like This
High-density and low-loss arrayed waveguide gratings composed of high index difference PLCs

Mikitaka Itoh
IThG1 Integrated Photonics Research (IPR) 2002

Design and Applications of AWG and PLC

Katsunari Okamoto and Kazumasa Takada
IFE3 Integrated Photonics Research (IPR) 2002

High contrast waveguide devices

Yoshinori Hibino
WB1 Optical Fiber Communication Conference (OFC) 2001

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved