Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Distributed hydrostatic pressure measurement using phase-OTDR in a highly birefringent photonic crystal fibre

Open Access Open Access

Abstract

We demonstrate a distributed hydrostatic pressure measurement based on phase-sensitive optical time-domain reflectometry in a highly birefringent photonic crystal fibre with a 0.4 bar pressure resolution and a 10 cm spatial resolution.

© 2018 The Author(s)

PDF Article
More Like This
Highly birefringent photonic crystal fiber for distributed hydrostatic pressure sensing

Sergei Mikhailov, Thomas Geernaert, and Francis Berghmans
W4.21 Optical Fiber Sensors (OFS) 2020

Temperature-compensated distributed hydrostatic pressure Brillouin sensor using a thin-diameter and polarization-maintaining photonics crystal fiber

Lei Teng, Yongkang Dong, Dengwang Zhou, and Taofei Jiang
W4A.55 Asia-Pacific Optical Sensors Conference (APOS) 2016

Fully distributed pressure sensing with ultra-high-sensitivity using side-hole fibers

Li Zhang, Zhisheng Yang, Łukasz Szostkiewicz, Krzysztof Markiewicz, Tomasz Nasilowski, and Luc Thévenaz
WF13 Optical Fiber Sensors (OFS) 2018

References

  • View by:

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [Crossref]
  2. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  3. Y. H. Kim, H. Kwon, J. Kim, and K. Y. Song, “Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers,” Opt. Express 24(19), 21399–21406 (2016).
    [Crossref]
  4. T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high-temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett. 37(6), 1064–1066 (2012).
    [Crossref]
  5. L. Teng, H. Zhang, Y. Dong, D. Zhou, T. Jiang, W. Gao, Z. Lu, L. Chen, and X. Bao, “Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings,” Opt. Lett. 41(18), 4413–4416 (2016).
    [Crossref]
  6. S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars)." Optics communications 219(1–6), 395–410 (2003).
    [Crossref]
  7. H. M. Xie, P. Dabkiewicz, R. Ulrich, and K. Okamoto, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett. 11(5), 333–335 (1986).
    [Crossref]
  8. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt. 43(24), 4739–4744 (2004)
    [Crossref]
  9. M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
    [Crossref]
  10. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
    [Crossref]

2016 (2)

2015 (1)

2012 (1)

2010 (1)

2009 (1)

2004 (1)

2003 (1)

S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars)." Optics communications 219(1–6), 395–410 (2003).
[Crossref]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

1986 (1)

Anuszkiewicz, A.

Bao, X.

Berghmans, F.

Cambon, P.

S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars)." Optics communications 219(1–6), 395–410 (2003).
[Crossref]

Chen, K. P.

Chen, L.

Chen, R.

Chen, T.

Dabkiewicz, P.

Dong, Y.

Gao, W.

Geernaert, T.

Gonzalez-Herraez, M.

Hogari, K.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Imahama, M.

Jewart, C.

Jiang, T.

Kim, J.

Kim, Y. H.

Klimek, J.

Koyamada, Y.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kubota, K.

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kwon, H.

Le Floch, S.

S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars)." Optics communications 219(1–6), 395–410 (2003).
[Crossref]

Lu, X.

Lu, Z.

Makara, M.

Maklad, M.

Martins, H. F.

Martynkien, T.

Mergo, P.

Nasilowski, T.

Okamoto, K.

Olszewski, J.

Poturaj, K.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Skorupski, K.

Song, K. Y.

Sonnenfeld, C.

Soto, M. A.

Statkiewicz-Barabach, G.

Swinehart, P. R.

Szczurowski, M. K.

Szpulak, M.

Tarnowski, K.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Teng, L.

Thévenaz, L.

Thienpont, H.

Ulrich, R.

Urbanczyk, W.

Wang, Q.

Wojcik, J.

Xie, H. M.

Zhang, B.

Zhang, H.

Zhou, D.

Appl. Opt. (1)

J. Lightwave Technol. (2)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optics communications (1)

S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars)." Optics communications 219(1–6), 395–410 (2003).
[Crossref]

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved