Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theoretical and Experimental Mapping of Forward Brillouin Scattering Four-Wave Mixing Processes in Fiber

Open Access Open Access

Abstract

Distributed mapping of four-wave mixing involving forward stimulated Brillouin scattering and Kerr nonlinearity is reported in simulation and experiment. The process strongly depends on frequency spacing between optical waves. Results are applicable to fiber sensing.

© 2018 The Author(s)

PDF Article
More Like This
Distributed Monitoring of Cascaded Four-Wave Mixing due to Kerr and Opto-Mechanical Nonlinearities

Hilel Hagai Diamandi, Yosef London, Gil Bashan, and Avi Zadok
JTu2A.80 CLEO: Applications and Technology (CLEO_AT) 2018

Impact of Brillouin-enhanced Four-wave Mixing on the Stimulated Brillouin Scattering Threshold in Short Optical Fibers

Kyoungyoon Park, Achar V. Harish, Johan Nilsson, and Yoonchan Jeong
SeW4E.4 Optical Sensors (Sensors) 2018

Brillouin-induced four-wave mixing using forward scattering

K. D. Ridley and A. M. Scott
QFE4 Quantum Electronics and Laser Science Conference (QELS) 1991

References

  • View by:

  1. R. M. Shelby, M. D. Levenson, and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 31, 5244–5252 (1985).
    [Crossref]
  2. P. St. J. Russell, D. Culverhouse, and F. Farahi, "Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre," Elect. Lett. 26, 1195–1196 (1990).
    [Crossref]
  3. A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, "Excitation of sound waves upon propagation of laser pulses in optical fibers," IEEE J. Quant. Elect. 32, 765–775 (2002).
    [Crossref]
  4. J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, "FSBS resonances observed in standard highly nonlinear fiber," Opt. Express 19, 53395349 (2011).
  5. M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Physics 5, 276–280 (2009).
    [Crossref]
  6. A. Butsch, J. R. Koehler, R. E. Noskov, and P. St. J. Russell, "CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber," Optica 1, 158 (2014).
    [Crossref]
  7. Y. Tanaka and K. Ogusu "Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering," IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
    [Crossref]
  8. Y. Tanaka and K. Ogusu, "Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering," IEEE Photon. Technol. Lett. 11, 865–867 (1999).
    [Crossref]
  9. Y. Antman, A. Clain, Y. London, and A. Zadok, "Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering," Optica 3, 510–516 (2016).
    [Crossref]
  10. N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Experimental study on depolarized GAWBS spectrum for optomechanical sensing of liquids outside standard fibers," Opt. Express 25, 2239–2244 (2017).
    [Crossref]
  11. D. Chow, M. A. Soto, and L. Thevenaz, "Frequency-domain technique to measure the inertial response of forward stimulated Brillouin scattering for acoustic impedance sensing," Paper 1032311, Proc. SPIE 10323, 25th International Conference on Optical Fibre Sensors (OFS-25), (Jeju, Korea, April 23, 2017).
  12. N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Characterization of depolarized GAWBS for optomechanical sensing of liquids outside standard fibers," Paper 13230M, Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors (OFS-25), (Jeju, Korea, 23 April, 2017).
  13. G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, "Opto-mechanical time-domain reflectometry: distributed sensing outside the cladding of standard fiber," accepted for presentation, Conference on Lasers and Electro-Optics (CLEO) 2018, May 13–18 2018, San-Jose, CA, (Proceedings of the Optical Society of America).
  14. C. Wolff, B. Stiller, B. J. Eggleton, M. J. Steel, and C. G. Poulton, "Cascaded forward Brillouin scattering to ass Stokes orders," New J. Phys. 19, 023021 (2017).
    [Crossref]
  15. D. Marcuse, C. R. Menyuk, and P. K. A. Wai, "Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence," J. Lightwave Technol. 15, 1735–1746 (1997).
    [Crossref]
  16. P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence," J. Lightwave Technol. 14, 148–157 (1996).
    [Crossref]
  17. S. K. Morshnev, V. P. Gubin, I. P. Vorob'ev, I. I. Starostin, A. I. Sazonov, Y. K. Chamorovsky, and N. M. Korotkov, "Spun optical fibres: A helical structure of linear birefringence or circular birefringence?" Quantum Electronics 39, 287–292 (2009).
    [Crossref]
  18. Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon 2, 041303 (2017).
  19. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, "Method for facile and accurate measurement of optical fiber dispersion maps," Opt. Lett. 21, 1724–1726 (1996).
    [Crossref]
  20. M. González Herráez, L. Thévenaz, and P. Robert, "Distributed measurement of chromatic dispersion by four-wave mixing and Brillouin optical-time-domain analysis," Opt. Lett. 28, 2210–2212 (2003).
    [Crossref]
  21. A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1–59 (2010).
    [Crossref]
  22. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, "Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR," J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  23. X. Lu, M. A. Soto, and L. Thévenaz, "Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry," Opt. Express 25, 16059–16071 (2017).
    [Crossref]

2017 (4)

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Experimental study on depolarized GAWBS spectrum for optomechanical sensing of liquids outside standard fibers," Opt. Express 25, 2239–2244 (2017).
[Crossref]

C. Wolff, B. Stiller, B. J. Eggleton, M. J. Steel, and C. G. Poulton, "Cascaded forward Brillouin scattering to ass Stokes orders," New J. Phys. 19, 023021 (2017).
[Crossref]

Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon 2, 041303 (2017).

X. Lu, M. A. Soto, and L. Thévenaz, "Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry," Opt. Express 25, 16059–16071 (2017).
[Crossref]

2016 (1)

2014 (1)

2011 (1)

J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, "FSBS resonances observed in standard highly nonlinear fiber," Opt. Express 19, 53395349 (2011).

2010 (1)

2009 (3)

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, "Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR," J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Physics 5, 276–280 (2009).
[Crossref]

S. K. Morshnev, V. P. Gubin, I. P. Vorob'ev, I. I. Starostin, A. I. Sazonov, Y. K. Chamorovsky, and N. M. Korotkov, "Spun optical fibres: A helical structure of linear birefringence or circular birefringence?" Quantum Electronics 39, 287–292 (2009).
[Crossref]

2003 (1)

2002 (1)

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, "Excitation of sound waves upon propagation of laser pulses in optical fibers," IEEE J. Quant. Elect. 32, 765–775 (2002).
[Crossref]

1999 (1)

Y. Tanaka and K. Ogusu, "Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering," IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

1998 (1)

Y. Tanaka and K. Ogusu "Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering," IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

1997 (1)

D. Marcuse, C. R. Menyuk, and P. K. A. Wai, "Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence," J. Lightwave Technol. 15, 1735–1746 (1997).
[Crossref]

1996 (2)

P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence," J. Lightwave Technol. 14, 148–157 (1996).
[Crossref]

L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, "Method for facile and accurate measurement of optical fiber dispersion maps," Opt. Lett. 21, 1724–1726 (1996).
[Crossref]

1990 (1)

P. St. J. Russell, D. Culverhouse, and F. Farahi, "Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre," Elect. Lett. 26, 1195–1196 (1990).
[Crossref]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Antman, Y.

Bashan, G.

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, "Opto-mechanical time-domain reflectometry: distributed sensing outside the cladding of standard fiber," accepted for presentation, Conference on Lasers and Electro-Optics (CLEO) 2018, May 13–18 2018, San-Jose, CA, (Proceedings of the Optical Society of America).

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Biryukov, A. S.

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, "Excitation of sound waves upon propagation of laser pulses in optical fibers," IEEE J. Quant. Elect. 32, 765–775 (2002).
[Crossref]

Brenn, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Physics 5, 276–280 (2009).
[Crossref]

Butsch, A.

Chamorovsky, Y. K.

S. K. Morshnev, V. P. Gubin, I. P. Vorob'ev, I. I. Starostin, A. I. Sazonov, Y. K. Chamorovsky, and N. M. Korotkov, "Spun optical fibres: A helical structure of linear birefringence or circular birefringence?" Quantum Electronics 39, 287–292 (2009).
[Crossref]

Chow, D.

D. Chow, M. A. Soto, and L. Thevenaz, "Frequency-domain technique to measure the inertial response of forward stimulated Brillouin scattering for acoustic impedance sensing," Paper 1032311, Proc. SPIE 10323, 25th International Conference on Optical Fibre Sensors (OFS-25), (Jeju, Korea, April 23, 2017).

Chowdhury, D.

Clain, A.

Culverhouse, D.

P. St. J. Russell, D. Culverhouse, and F. Farahi, "Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre," Elect. Lett. 26, 1195–1196 (1990).
[Crossref]

Diamandi, H. H.

Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon 2, 041303 (2017).

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, "Opto-mechanical time-domain reflectometry: distributed sensing outside the cladding of standard fiber," accepted for presentation, Conference on Lasers and Electro-Optics (CLEO) 2018, May 13–18 2018, San-Jose, CA, (Proceedings of the Optical Society of America).

Dianov, E. M.

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, "Excitation of sound waves upon propagation of laser pulses in optical fibers," IEEE J. Quant. Elect. 32, 765–775 (2002).
[Crossref]

Eggleton, B. J.

C. Wolff, B. Stiller, B. J. Eggleton, M. J. Steel, and C. G. Poulton, "Cascaded forward Brillouin scattering to ass Stokes orders," New J. Phys. 19, 023021 (2017).
[Crossref]

Farahi, F.

P. St. J. Russell, D. Culverhouse, and F. Farahi, "Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre," Elect. Lett. 26, 1195–1196 (1990).
[Crossref]

Gauthier, D. J.

J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, "FSBS resonances observed in standard highly nonlinear fiber," Opt. Express 19, 53395349 (2011).

González Herráez, M.

Gubin, V. P.

S. K. Morshnev, V. P. Gubin, I. P. Vorob'ev, I. I. Starostin, A. I. Sazonov, Y. K. Chamorovsky, and N. M. Korotkov, "Spun optical fibres: A helical structure of linear birefringence or circular birefringence?" Quantum Electronics 39, 287–292 (2009).
[Crossref]

Hayashi, N.

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Experimental study on depolarized GAWBS spectrum for optomechanical sensing of liquids outside standard fibers," Opt. Express 25, 2239–2244 (2017).
[Crossref]

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Characterization of depolarized GAWBS for optomechanical sensing of liquids outside standard fibers," Paper 13230M, Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors (OFS-25), (Jeju, Korea, 23 April, 2017).

Hogari, K.

Imahama, M.

Kang, M. S.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Physics 5, 276–280 (2009).
[Crossref]

Kobyakov, A.

Koehler, J. R.

Korotkov, N. M.

S. K. Morshnev, V. P. Gubin, I. P. Vorob'ev, I. I. Starostin, A. I. Sazonov, Y. K. Chamorovsky, and N. M. Korotkov, "Spun optical fibres: A helical structure of linear birefringence or circular birefringence?" Quantum Electronics 39, 287–292 (2009).
[Crossref]

Koyamada, Y.

Kubota, K.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

London, Y.

Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon 2, 041303 (2017).

Y. Antman, A. Clain, Y. London, and A. Zadok, "Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering," Optica 3, 510–516 (2016).
[Crossref]

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, "Opto-mechanical time-domain reflectometry: distributed sensing outside the cladding of standard fiber," accepted for presentation, Conference on Lasers and Electro-Optics (CLEO) 2018, May 13–18 2018, San-Jose, CA, (Proceedings of the Optical Society of America).

Lu, X.

Mamyshev, P. V.

Marcuse, D.

D. Marcuse, C. R. Menyuk, and P. K. A. Wai, "Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence," J. Lightwave Technol. 15, 1735–1746 (1997).
[Crossref]

Menyuk, C. R.

D. Marcuse, C. R. Menyuk, and P. K. A. Wai, "Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence," J. Lightwave Technol. 15, 1735–1746 (1997).
[Crossref]

P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence," J. Lightwave Technol. 14, 148–157 (1996).
[Crossref]

Mizuno, Y.

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Experimental study on depolarized GAWBS spectrum for optomechanical sensing of liquids outside standard fibers," Opt. Express 25, 2239–2244 (2017).
[Crossref]

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Characterization of depolarized GAWBS for optomechanical sensing of liquids outside standard fibers," Paper 13230M, Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors (OFS-25), (Jeju, Korea, 23 April, 2017).

Mollenauer, L. F.

Morshnev, S. K.

S. K. Morshnev, V. P. Gubin, I. P. Vorob'ev, I. I. Starostin, A. I. Sazonov, Y. K. Chamorovsky, and N. M. Korotkov, "Spun optical fibres: A helical structure of linear birefringence or circular birefringence?" Quantum Electronics 39, 287–292 (2009).
[Crossref]

Nakamura, K.

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Experimental study on depolarized GAWBS spectrum for optomechanical sensing of liquids outside standard fibers," Opt. Express 25, 2239–2244 (2017).
[Crossref]

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Characterization of depolarized GAWBS for optomechanical sensing of liquids outside standard fibers," Paper 13230M, Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors (OFS-25), (Jeju, Korea, 23 April, 2017).

Nazarkin, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Physics 5, 276–280 (2009).
[Crossref]

Neubelt, M. J.

Noskov, R. E.

Ogusu, K.

Y. Tanaka and K. Ogusu, "Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering," IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

Y. Tanaka and K. Ogusu "Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering," IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

Poulton, C. G.

C. Wolff, B. Stiller, B. J. Eggleton, M. J. Steel, and C. G. Poulton, "Cascaded forward Brillouin scattering to ass Stokes orders," New J. Phys. 19, 023021 (2017).
[Crossref]

Preter, E.

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, "Opto-mechanical time-domain reflectometry: distributed sensing outside the cladding of standard fiber," accepted for presentation, Conference on Lasers and Electro-Optics (CLEO) 2018, May 13–18 2018, San-Jose, CA, (Proceedings of the Optical Society of America).

Robert, P.

Russell, P. St. J.

A. Butsch, J. R. Koehler, R. E. Noskov, and P. St. J. Russell, "CW-pumped single-pass frequency comb generation by resonant optomechanical nonlinearity in dual-nanoweb fiber," Optica 1, 158 (2014).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Physics 5, 276–280 (2009).
[Crossref]

P. St. J. Russell, D. Culverhouse, and F. Farahi, "Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre," Elect. Lett. 26, 1195–1196 (1990).
[Crossref]

Sauer, M.

Sazonov, A. I.

S. K. Morshnev, V. P. Gubin, I. P. Vorob'ev, I. I. Starostin, A. I. Sazonov, Y. K. Chamorovsky, and N. M. Korotkov, "Spun optical fibres: A helical structure of linear birefringence or circular birefringence?" Quantum Electronics 39, 287–292 (2009).
[Crossref]

Set, S. Y.

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Experimental study on depolarized GAWBS spectrum for optomechanical sensing of liquids outside standard fibers," Opt. Express 25, 2239–2244 (2017).
[Crossref]

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Characterization of depolarized GAWBS for optomechanical sensing of liquids outside standard fibers," Paper 13230M, Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors (OFS-25), (Jeju, Korea, 23 April, 2017).

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Soto, M. A.

X. Lu, M. A. Soto, and L. Thévenaz, "Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry," Opt. Express 25, 16059–16071 (2017).
[Crossref]

D. Chow, M. A. Soto, and L. Thevenaz, "Frequency-domain technique to measure the inertial response of forward stimulated Brillouin scattering for acoustic impedance sensing," Paper 1032311, Proc. SPIE 10323, 25th International Conference on Optical Fibre Sensors (OFS-25), (Jeju, Korea, April 23, 2017).

Starostin, I. I.

S. K. Morshnev, V. P. Gubin, I. P. Vorob'ev, I. I. Starostin, A. I. Sazonov, Y. K. Chamorovsky, and N. M. Korotkov, "Spun optical fibres: A helical structure of linear birefringence or circular birefringence?" Quantum Electronics 39, 287–292 (2009).
[Crossref]

Steel, M. J.

C. Wolff, B. Stiller, B. J. Eggleton, M. J. Steel, and C. G. Poulton, "Cascaded forward Brillouin scattering to ass Stokes orders," New J. Phys. 19, 023021 (2017).
[Crossref]

Stiller, B.

C. Wolff, B. Stiller, B. J. Eggleton, M. J. Steel, and C. G. Poulton, "Cascaded forward Brillouin scattering to ass Stokes orders," New J. Phys. 19, 023021 (2017).
[Crossref]

Sukharev, M. E.

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, "Excitation of sound waves upon propagation of laser pulses in optical fibers," IEEE J. Quant. Elect. 32, 765–775 (2002).
[Crossref]

Tanaka, Y.

Y. Tanaka and K. Ogusu, "Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering," IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

Y. Tanaka and K. Ogusu "Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering," IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

Thevenaz, L.

D. Chow, M. A. Soto, and L. Thevenaz, "Frequency-domain technique to measure the inertial response of forward stimulated Brillouin scattering for acoustic impedance sensing," Paper 1032311, Proc. SPIE 10323, 25th International Conference on Optical Fibre Sensors (OFS-25), (Jeju, Korea, April 23, 2017).

Thévenaz, L.

Vorob'ev, I. P.

S. K. Morshnev, V. P. Gubin, I. P. Vorob'ev, I. I. Starostin, A. I. Sazonov, Y. K. Chamorovsky, and N. M. Korotkov, "Spun optical fibres: A helical structure of linear birefringence or circular birefringence?" Quantum Electronics 39, 287–292 (2009).
[Crossref]

Wai, P. K. A.

D. Marcuse, C. R. Menyuk, and P. K. A. Wai, "Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence," J. Lightwave Technol. 15, 1735–1746 (1997).
[Crossref]

P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence," J. Lightwave Technol. 14, 148–157 (1996).
[Crossref]

Wang, J.

J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, "FSBS resonances observed in standard highly nonlinear fiber," Opt. Express 19, 53395349 (2011).

Wolff, C.

C. Wolff, B. Stiller, B. J. Eggleton, M. J. Steel, and C. G. Poulton, "Cascaded forward Brillouin scattering to ass Stokes orders," New J. Phys. 19, 023021 (2017).
[Crossref]

Yamashita, S.

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Experimental study on depolarized GAWBS spectrum for optomechanical sensing of liquids outside standard fibers," Opt. Express 25, 2239–2244 (2017).
[Crossref]

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Characterization of depolarized GAWBS for optomechanical sensing of liquids outside standard fibers," Paper 13230M, Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors (OFS-25), (Jeju, Korea, 23 April, 2017).

Zadok, A.

Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon 2, 041303 (2017).

Y. Antman, A. Clain, Y. London, and A. Zadok, "Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering," Optica 3, 510–516 (2016).
[Crossref]

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, "Opto-mechanical time-domain reflectometry: distributed sensing outside the cladding of standard fiber," accepted for presentation, Conference on Lasers and Electro-Optics (CLEO) 2018, May 13–18 2018, San-Jose, CA, (Proceedings of the Optical Society of America).

Zhang, R.

J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, "FSBS resonances observed in standard highly nonlinear fiber," Opt. Express 19, 53395349 (2011).

Zhu, Y.

J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, "FSBS resonances observed in standard highly nonlinear fiber," Opt. Express 19, 53395349 (2011).

Adv. Opt. Photon. (1)

Appl. Phys. Lett. Photon (1)

Y. London, H. H. Diamandi, and A. Zadok, “Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber,” Appl. Phys. Lett. Photon 2, 041303 (2017).

Elect. Lett. (1)

P. St. J. Russell, D. Culverhouse, and F. Farahi, "Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre," Elect. Lett. 26, 1195–1196 (1990).
[Crossref]

IEEE J. Quant. Elect. (1)

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, "Excitation of sound waves upon propagation of laser pulses in optical fibers," IEEE J. Quant. Elect. 32, 765–775 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. Tanaka and K. Ogusu "Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering," IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

Y. Tanaka and K. Ogusu, "Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering," IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

J. Lightwave Technol. (3)

D. Marcuse, C. R. Menyuk, and P. K. A. Wai, "Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence," J. Lightwave Technol. 15, 1735–1746 (1997).
[Crossref]

P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence," J. Lightwave Technol. 14, 148–157 (1996).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, "Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR," J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

Nat. Physics (1)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Physics 5, 276–280 (2009).
[Crossref]

New J. Phys. (1)

C. Wolff, B. Stiller, B. J. Eggleton, M. J. Steel, and C. G. Poulton, "Cascaded forward Brillouin scattering to ass Stokes orders," New J. Phys. 19, 023021 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (2)

Phys. Rev. B (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Quantum Electronics (1)

S. K. Morshnev, V. P. Gubin, I. P. Vorob'ev, I. I. Starostin, A. I. Sazonov, Y. K. Chamorovsky, and N. M. Korotkov, "Spun optical fibres: A helical structure of linear birefringence or circular birefringence?" Quantum Electronics 39, 287–292 (2009).
[Crossref]

Other (3)

D. Chow, M. A. Soto, and L. Thevenaz, "Frequency-domain technique to measure the inertial response of forward stimulated Brillouin scattering for acoustic impedance sensing," Paper 1032311, Proc. SPIE 10323, 25th International Conference on Optical Fibre Sensors (OFS-25), (Jeju, Korea, April 23, 2017).

N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, and S. Yamashita, "Characterization of depolarized GAWBS for optomechanical sensing of liquids outside standard fibers," Paper 13230M, Proc. SPIE 10323, 25th International Conference on Optical Fiber Sensors (OFS-25), (Jeju, Korea, 23 April, 2017).

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, "Opto-mechanical time-domain reflectometry: distributed sensing outside the cladding of standard fiber," accepted for presentation, Conference on Lasers and Electro-Optics (CLEO) 2018, May 13–18 2018, San-Jose, CA, (Proceedings of the Optical Society of America).

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved