Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electrooptic Parallel Interfacing for Neural Computing and a Nonlinear Organic Spatial Light Modulator

Not Accessible

Your library or personal account may give you access

Abstract

Optical neural network computing is of great interest in terms of massively parallel computing. In recent years, CCD cameras, optoelectronic smart pixels and spatial light modulators (SLMs) with the high spatial resolution are reported[1,2]. In some cases, however, the interface between 2-D inputs and parallel neural computing systems or between the computing systems and output devices is not parallel but serial. The bandwidth of the interface between the I/O systems and the main computing system is limited and therefore this limits the performance of the total system. Such a problem is sometimes called I/O bottleneck. An all-optical parallel neural computing system with highly parallel I/O capability has been reported[3,4]. The system of the holographic associative memory, however, has limited functions and performances, because of less flexibility of optical systems. An alternative approach is to employ functional optoelectronic systems for wide-bandwidth input data, which can compress the data for the neural computing system. In this paper, we present network system consisting of an electronic parallel interface or preprocessor is described, and a generic interface device using nonlinear organic material for such a system is finally proposed.

© 1995 Optical Society of America

PDF Article
More Like This
Organization for a Parallel Optical Memory Interface

Gregory Deatz and Miles Murdocca
OMC16 Optical Computing (IP) 1995

Organic Thin-Films For Spatial Light Modulation

Jean-Michel Nunzi, Stephane Delysse, Nicola Pfeffer, and Fabrice Charra
MC.4 Organic Thin Films for Photonic Applications (OTF) 1995

Effects of Imperfection in Spatial Optical Devices on Backpropagation Learning Capability of Optoelectronic Neural Network

Satoshi Ishihara, Nobuyuki Kasama, Masahiko Mori, Yoshio Hayasaki, and Toyohiko Yatagai
PdP2 Optical Computing (IP) 1991

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.