Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mechanisms of chromophore reorientation probed with in-situ, pressure second harmonic generation

Not Accessible

Your library or personal account may give you access

Abstract

Research to determine the mechanisms which tie chromophore reorientation to polymer relaxation is crucial to the development of thermally stable NLO polymers.1 Most of the work to date has been performed above or near the glass transition temperature where the decay of the NLO properties of the material is tied to the glass transition and the α-motion of the polymer backbone. Devices which rely upon permanently poled polymer films for their NLO characteristics are not designed to operate near or above the glass transition because their nonlinear properties would quickly dissipate. A study of the coupling between polymer motion and chromophore reorientation below the glass transition temperature is necessary to gain insight into the reorientional dynamics of the chromophores at common device temperatures. Using the results of elevated temperature studies to predict the behavior of the NLO properties below Tg may not be accurate if the mechanisms responsible for chromophore reorientation are not the same in both regimes.

© 1997 Optical Society of America

PDF Article
More Like This
Electric-field-induced second harmonic generation as a probe of molecular reorientational mechanisms in nonlinear optics

M. G. KUZYK, R. C. MOORE, and L. A. KING
TUAA4 Quantum Electronics and Laser Science Conference (CLEO:FS) 1989

Towards a physical interpretation of the activation volume for chromophore reorientation in corona poled polymers

Shane C. Brower and L. Michael Hayden
ThE.4 Organic Thin Films for Photonic Applications (OTF) 1995

Orientational Relaxation of NLO Dipole Moments Transversely Aligned to the Main Backbone in the Linear Polyurethane

Naoto Tsutsumi, Osamu Matsumoto, and Wataru Sakai
ThE.5 Organic Thin Films for Photonic Applications (OTF) 1997

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.