Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

New insights into the design of conjugated polymers for intramolecular singlet fission

Not Accessible

Your library or personal account may give you access

Abstract

Singlet fission (SF), a multiple exciton generation process that generates two triplet excitons after the absorption of one photon, can potentially enable more efficient solar cell designs by harvesting energy normally lost as heat. While low-bandgap conjugated polymers are highly promising candidates for efficient SF-based solar cells, few polymer materials capable of SF have been reported because the SF process in polymer chains is poorly understood. Using transient spectroscopy, we demonstrate a new, highly efficient (triplet yield of 160–200%) isoindigo-based donor-acceptor polymer and show that the triplet pairs are directly emissive and exhibit a time-dependent energy evolution. Importantly, aggregation in poor solvents and in films significantly lowers the singlet energy, suppressing triplet formation because the energy conservation criterion is no longer met. These results suggest a new design rule for developing intramolecular SF capable low-bandgap conjugated polymers, whereby inter-chain interactions must be carefully engineered.

© 2018 The Author(s)

PDF Article
More Like This
Ultrafast Spatial Dynamics of Excitons During Intramolecular Singlet Fission

Matthew Y. Sfeir, Samuel N. Sanders, Elango Kumarasamy, Andrew B. Pun, Kannatassen Appavoo, Michael L. Steigerwald, and Luis M. Campos
UW3A.2 International Conference on Ultrafast Phenomena (UP) 2016

Plasmon-Mediated Singlet Fission Dynamics in TIPS-PEN near Silver-Organic interface

Pavel V. Kolesnichenko, Manuel Hertzog, Felix Hainer, Felix Deschler, Jana Zaumseil, and Tiago Buckup
eh_p_14 European Quantum Electronics Conference (EQEC) 2023

Singlet Fission: Current Challenges and Spectroscopy

M. J. Y. Tayebjee, S. N. Sanders, E. Kumarasamy, A. Asadpoordarvish, A. Pun, D. Niesner, M. Y. Sfeir, L. M. Campos, and D. R. McCamey
PW3C.2 Optical Devices and Materials for Solar Energy and Solid-state Lighting (SOLED) 2019

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved