Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of dephasing processes and temperature effects on transient hole-burning

Not Accessible

Your library or personal account may give you access

Abstract

There has been a very rapid development in the experimental and theoretical treatments of ultrafast processes. Among all the spectroscopic techniques which enable us to understand the dynamics, as well as the mechanisms taking place between a molecule and its surrounding, transient hole-burning [1] holds the prospect of differentiating the homogeneous component resulting from very rapid interactions from the inhomogeneous conponent generated by the slowly varying interactions. Recently some limitations to transient hole-burning in the liquid phase have been identified [2]. For a narrow pump pulse, and a time delay short enough to avoid the influence of the spectral diffusion, the homogeneous linewidth is proportional to the hole width. If the spectral diffusion is rapid, the homogeneous contribution is then unobservable. Moreover, spectral congestion generates an overlaping of the holes corresponding to the vibrational structure. Also, Lauberau et al. [3] have developed and reported the application of picosecond time-resolved hole-burning to study the dynamics of inhomogeneous molecular systems in the infrared frequency domain. In their experiment, the pump and probe pulse overlap. Although previous description have taken into account the artifact contribution which comes from the overlap of the pulses, in the present work we shall give a theoretical description of ultrafast transient hole-burning to emphasize the effects of pure dephasing processes as well as temperature effects.

© 1992 Optical Society of America

PDF Article
More Like This
Dephasing and Temperature Cycling in Photochemical Hole-Burning Experiments on Dihydrophenazine in Fluorene Single Crystals

B. Prass, C. von Borczyskowski, and D. Stehlik
PD1 Spectral Hole-Burning and Luminescence Line Narrowing: Science and Applications (SHBL) 1992

Coherence Effects on Ultra-Narrow Hole Burning in Solids

A. Szabo
ThK3 International Quantum Electronics Conference (IQEC) 1992

Ultrafast transient hole-burning studies of molecular dynamics from low-temperature glass to room-temperature liquid

Mark Berg, Jongwan Yu, and John T. Fourkas
QThD22 Quantum Electronics and Laser Science Conference (CLEO:FS) 1992

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.