Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

A Comparison of Microwave Inverse Scattering and Imaging Techniques

Not Accessible

Your library or personal account may give you access

Abstract

Microwave imaging and inverse scattering, although closely related disciplines, have nonethe-less evolved separately over the last few years because of the differences in their respective applications. While both seek to characterize a scattering object (the “target”) from measurements of its scattered field, the methodology used historically to achieve this end differs. Although there is no formal delineation between the two, microwave imaging techniques typically construct a spatial distribution of a field or source-like quantity, such as current, reflectivity, or scattering centers, which is linearly related to the scattered field, but which is often nonliteral and difficult to interpret. Inverse scattering methods, on the other hand, generate reconstructions of the target’s intrinsic characteristics, namely shape and materials properties, which are nonlinearly related to the measured data, and hence require significant computational resources for their implementation. For these reasons, inverse scattering is considered more rigorous and quantitative, while imaging is generally applicable to a wider class of targets, particularly those which are electrically large and complex.

© 1998 Optical Society of America

PDF Article
More Like This
Inversion of Fabry-Perot CCD Images: A comparison of techniques

Wilbert R. Skinner and Vincent J. Abreu
PD4 Optical Remote Sensing of the Atmosphere (ORS) 1990

Inverse scattering and quantum imaging

John C. Schotland
FM3C.6 Frontiers in Optics (FiO) 2012

Forward or backward? comparison of direct inversion and forward optimization techniques for DL-DOT

Ben Wiesel and Shlomi Arnon
126280V European Conference on Biomedical Optics (ECBO) 2023

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved