Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultrafast Studies of Resonant and Non-Resonant Electron and Hole Tunneling in Quantum Well Structures

Not Accessible

Your library or personal account may give you access

Abstract

Quantum mechanical phenomenon of tunneling is of fundamental interest and strongly influences high speed devices based on perpendicular transport of carriers in semiconductor microstructures. Ultrafast lasers provide ideal means for studying tunneling in such structures. We review in this talk our recent investigations of resonant and non-resonant tunneling of electrons and holes in asymmetric double quantum well structures (a-DQWS) using ultrafast luminescence spectroscopy. These investigations have directly determined various tunneling rates and have provided new insights into tunneling in microstructures. For the non-resonant case, we have determined the dependence of tunneling rate on the barrier thickness and the energy separation between the two electronic levels. We have shown that impurity-assisted tunneling rate is small and optical- phonon-assisted tunneling dominates when the energy separation allows this process. For the case of resonant tunneling, we have shown that tunneling rates are considerably smaller than expected because of destruction of coherence by relaxation and collisions and have developed a unified picture of tunneling in the presence of relaxation and collisions.

© 1990 Optical Society of America

PDF Article
More Like This
Optical Phonon-Assisted Tunneling in Double Quantum-Well Structures

D. Y. Oberli, Jagdeep Shah, T. C. Damen, R. F. Kopf, J. M. Kuo, and J. E. Henry
TRT111 Picosecond Electronics and Optoelectronics (UEO) 1989

Ultrafast Optical Studies of Tunneling and Perpendicular Transport in Semiconductor Microstructures

D. Y. Oberli, Jagdeep Shah, B. Deveaud, and T. C. Damen
TRT94 Picosecond Electronics and Optoelectronics (UEO) 1989

Ultrafast hole tunneling in GaInAs/AlInAs asymmetric double quantum wells

S. Ten, M. F. Krol, B. P. McGinnis, M. J. Hayduk, G. Khitrova, and N. Peyghambarian
UMB4 Ultrafast Electronics and Optoelectronics (UEO) 1995

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.