Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Time Resolved Electron Transfer Studies Between Metallointercalators in DNA

Not Accessible

Your library or personal account may give you access

Abstract

This paper reports the first ultrafast studies on the rates of DNA-mediated forward and reverse electron transfer between photoexcited [M(phen)2dppz]2+ (M=Ru or Os, phen =1,10-phenanthroline, dppz = dipyrido[3,2:a-2′,3′:c]-phenazine) and various electron acceptors in order to ultimately determine the distance dependence of electron transfer kinetics with DNA as an environment.1,2 Previously Barton, Turro, and coworkers have presented evidence that electron transfer in DNA can occur rapidly over an extraordinarily large distance3 with a more shallow distance dependence than that for other media, such as liquids and proteins.4,5 Some theoretical work supports the shallow distance dependence which is attributed to a long range, thermally activated coherent mechanism involving virtual excitation of the DNA "bridge".6 Utilizing time-correlated single photon counting (TCSPC), we observe a substantial fraction of photoexcited [M(phen)2dppz]2+ (M=Ru, Os) exhibits fast oxidative quenching (kq > 3 x 1010 s−1) in the presence of intercalating Rh(III) acceptors while the remaining excited-state species exhibit a range of quenching constants less than 108 s_1. Transient-absorption experiments on the picosecond timescale indicate that, for a series of donors bound to mixed sequence DNA, the majority of back electron transfer is also very fast (ca. 1010 s−1). Importantly, the rate constant for the fast ground-state recovery is independent of loading of Rh(III) intercalators on DNA. As shown in Figure 1, regardless of whether the average loading of metal complexes is 1 in 33 basepairs or 1 in 10 basepairs, the fast bleach recovery exhibited by [Ru(phen)2dppz]2+ is well fit under all conditions by an exponential decay of 9 x 109s−1. Separate ultrafast data suggests that, like the recombination reaction, the fast quenching *M2+ is simple first-order at early time. If the early time electron transfer kinetics were not simple first order, and the electron transfer rate decayed with an exponential distance dependence (i.e. ≅ a factor of 30 per base step [3.4 Å]), our TCSPC apparatus should be able to observe some evidence of the slower components with rate constants in the range of 1010 - 108 s−1. The absence of rates in this range is evidence that the electron transfer is simple first order at time < 10 ns. This result has implications with regards to the donor-acceptor separations on DNA. Throughout most of the titration, intercalators are dilute on the double helix and statistics show that the amount of fast quenching and ground-state recovery observed is too great to be accounted for by random loading of nearest-neighbor pairs. Thus, either the electron transfer reaction must involve clustering of the donor and acceptor on the helix or the DNA-mediated interaction must occur over long distance.

© 1996 Optical Society of America

PDF Article
More Like This
Fluorescence resonance energy transfer between a single donor and a single acceptor molecule

T Ha, Th Enderle, DF Ogletree, DS Chemla, PR Selvin, and S Weiss
FG1 International Quantum Electronics Conference (IQEC) 1996

Probing the interaction between single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor

S. Weiss, T. Ha, Th. Enderle, D. F. Ogletree, P. R. Selvin, and D. S. Chemla
QMF1 Quantum Electronics and Laser Science Conference (CLEO:FS) 1996

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.