Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simple and Temperature-Insensitive Pressure Sensing Based on a Hollow-Core Photonic Crystal Fiber

Not Accessible

Your library or personal account may give you access

Abstract

The sensitivity to pressure of lossy air-guided modes in a commercial hollow-core photonic crystal fiber was experimentally exploited to develop a novel pressure sensor. The transmission of these modes was directly modulated by the measurand, which makes the interrogation system very simple. Using a supercontinuum source, these specific modes were identified within the visible spectral range and correspond to narrow transmission windows well away from the fiber’s main bandgap, centered around 1550 nm. The origin of these windows is being investigated but is likely to be related to cladding bandgaps. One of these windows, around 633 nm, was used for the analysis presented in this paper. An attenuation increase was observed when pressure was applied to a ~3-cm long cell, which was traversed by the fiber. The attenuation reached 5 dB with 300 kgf/cm2 gauge pressure. The transmission was found to be insensitive to temperature up to 100%, which is a highly attractive feature for sensing applications. It was also found that much higher sensitivities (a few dB attenuation with ~0.5 kgf/cm2 gauge pressure) could be obtained when pressure was internally applied to the fiber microstructure. This fact allows for the construction of sensors with a wide range of sensitivities, which can, thus, suit different applications. Transmission within the infrared bandgap was insensitive to pressure and can serve as a reference.

© 2008 AIP

PDF Article
More Like This
Pressure/Temperature Sensor Based on a Dual-Core Photonic Crystal Fiber

Daru Chen, Gufeng Hu, and Lingxia Chen
83071N Asia Communications and Photonics Conference and Exhibition (ACP) 2011

Numerical and Experimental Studies for a High Pressure Photonic Crystal Fiber Based Sensor

Juliano G. Hayashi, Cristiano M. B. Cordeiro, Marcos A. R. Franco, and Francisco Sircilli
PS133 Workshop on Specialty Optical Fibers and their Applications (WSOF) 2008

Fabrication of Kagomé Hollow-core Photonic Crystal Fiber for Temperature Sensing

Haihu Yu, Xiong Cheng, Jian Ma, and Yu Zheng
Th4A.60 Asia-Pacific Optical Sensors Conference (APOS) 2016

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.