Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Exploring the physics of efficient optical trapping of dielectric nanoparticles with ultrafast pulsed excitation

Not Accessible

Your library or personal account may give you access

Abstract

Stable optical trapping of dielectric nanoparticles with low power high-repetition-rate ultrafast pulsed excitation has received considerable attention in recent years. However, the exact role of such excitation has been quite illusive so far since, for dielectric micron-sized particles, the trapping efficiency turns out to be similar to that of continuous-wave excitation and independent of pulse chirping. In order to provide a coherent explanation of this apparently puzzling phenomenon, we justify the superior role of high-repetition-rate pulsed excitation in dielectric nanoparticle trapping which is otherwise not possible with continuous-wave excitation at a similar average power level. We quantitatively estimate the optimal combination of pulse peak power and pulse repetition rate leading to a stable trap and discuss the role of inertial response on the dependence of trapping efficiency on pulse width. In addition, we report gradual trapping of individual quantum dots detected by a stepwise rise in a two-photon fluorescence signal from the trapped quantum dots which conclusively proves individual particle trapping.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination

Arijit Kumar De, Debjit Roy, Aveek Dutta, and Debabrata Goswami
Appl. Opt. 48(31) G33-G37 (2009)

Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers

Janelle C Shane, Michael Mazilu, Woei Ming Lee, and Kishan Dholakia
Opt. Express 18(7) 7554-7568 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved