Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dielectric elastomer stack actuator-based autofocus fluid lens

Not Accessible

Your library or personal account may give you access

Abstract

Extremely small cameras and many cell phones simply do not have enough room to allow users to move a rigid lens the distance required for a varying range of focal lengths. An adaptive liquid lens, however, enables small cameras to focus without needing extra room. An autofocus liquid lens provides several advantages over a traditional lens in terms of efficiency, cost, compactness, and flexibility. But one of the main challenges in these lenses is a high driving voltage requirement of around at least 1.8 kV. In this paper, we propose a new design of a liquid lens based on a dielectric elastomer stack actuator (DESA), which significantly overcomes the aforementioned existing problem. The lens consists of a frame (a thin DESA membrane with a hole in the middle), silicon oil, and water. A voltage range is applied on the membrane in order to change the hole dimension. Due to change of hole dimension, a change in meniscus occurs that changes the focal length of the lens. In this research work, various experimental results are achieved by configuring two DESA with different active areas. Depending on the active area of the membrane, the length of the laser beam on the plane varies from 6 to 35 mm, and the driving voltage is in the range of 50–750 V.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Varifocal liquid lens driven by a conical dielectric elastomer actuator

Yang Cheng, Zhikuo Li, Chuanxun Chen, Jie Cao, Chun Bao, Yan Ning, and Qun Hao
Appl. Opt. 61(15) 4633-4637 (2022)

Tunable lenses using transparent dielectric elastomer actuators

Samuel Shian, Roger M. Diebold, and David R. Clarke
Opt. Express 21(7) 8669-8676 (2013)

Electrically tunable binary phase Fresnel lens based on a dielectric elastomer actuator

Suntak Park, Bongje Park, Saekwang Nam, Sungryul Yun, Seung Koo Park, Seongcheol Mun, Jeong Mook Lim, Yeonghwa Ryu, Seok Ho Song, and Ki-Uk Kyung
Opt. Express 25(20) 23801-23808 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.