Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fast particle characterization using digital holography and neural networks

Not Accessible

Your library or personal account may give you access

Abstract

We propose using a neural network approach in conjunction with digital holographic microscopy in order to rapidly determine relevant parameters such as the core and shell diameter of coated, non-absorbing spheres. We do so without requiring a time-consuming reconstruction of the cell image. In contrast to previous approaches, we are able to obtain a continuous value for parameters such as size, as opposed to binning into a discrete number of categories. Also, we are able to separately determine both core and shell diameter. For simulated particle sizes ranging between 7 and 20 μm, we obtain accuracies of (4.4±0.2)% and (0.74±0.01)% for the core and shell diameter, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Digital holographic particle volume reconstruction using a deep neural network

Tomoyoshi Shimobaba, Takayuki Takahashi, Yota Yamamoto, Yutaka Endo, Atsushi Shiraki, Takashi Nishitsuji, Naoto Hoshikawa, Takashi Kakue, and Tomoyosh Ito
Appl. Opt. 58(8) 1900-1906 (2019)

Focus prediction in digital holographic microscopy using deep convolutional neural networks

Tomi Pitkäaho, Aki Manninen, and Thomas J. Naughton
Appl. Opt. 58(5) A202-A208 (2019)

Characterizations of transparent particle holography in near-field using Debye series

Yingchun Wu, Xuecheng Wu, Longchao Yao, Marc Brunel, Sébastien Coëtmellec, Renxian Li, Denis Lebrun, Hao Zhou, Gérard Gréhan, and Kefa Cen
Appl. Opt. 55(3) A60-A70 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.