Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Is laser space propulsion practical?: review

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we review practical limitations to laser space propulsion that have been discussed in the literature. These are as follows: (1) thermal coupling to the propelled payload, which might melt it; (2) a decrease in mechanical coupling with number of pulses, which has been observed in some cases; and (3) destruction of solar panels in debris removal proposals that might create more debris rather than less. Previously, lack of data prevented definite assessments. Now, new data on multipulse vacuum laser impulse coupling coefficient $ C_m $ on several materials at 1064 nm, at 1030 nm, and at 532 nm are available. We are now able to compare the results for single and multiple pulses on materials that have been considered for laser ablation space propulsion (LASP), or that are likely space debris constituents, and decide whether LASP is a practical idea. Laser space propulsion and debris removal concepts depend on thousands or hundreds of thousands of repetitive pulses. Repetitive pulse mechanical coupling as well as thermal coupling (which can melt the target rather than propel it) are both important considerations. Materials studied were 6061T6 aluminum, carbon-doped polyoxymethylene (POM), undoped POM, a yellow POM copolymer, and a mixture of Al and POM microparticles combined and pressed, containing a 50%/50% mixture of the two materials by mass. We address 6 and 70 ps pulses because of the availability of data at these pulse durations. We also briefly consider continuous wave (CW) laser propulsion. Finally, we consider a recent paper concerning solar panel destruction from a positive perspective.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Evaluation of the role of beam homogeneity on the mechanical coupling of laser-ablation-generated impulse

Jacopo Terragni, Pietro Battocchio, Nicola Bazzanella, Michele Orlandi, William J. Burger, Roberto Battiston, and Antonio Miotello
Appl. Opt. 60(31) H37-H44 (2021)

Supersonic laser propulsion

Yurii Rezunkov and Alexander Schmidt
Appl. Opt. 53(31) I55-I62 (2014)

Launching swarms of microsatellites using a 100  kW average power pulsed laser

C. Phipps, C. Bonnal, F. Masson, and P. Musumeci
J. Opt. Soc. Am. B 35(10) B20-B26 (2018)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved