Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Improved opposition-based self-adaptive differential evolution algorithm for vibrational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering thermometry

Not Accessible

Your library or personal account may give you access

Abstract

We propose an improved opposition-based self-adaptive differential evolution (IOSaDE) algorithm for multi-parameter optimization in vibrational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) thermometry. This new algorithm self-adaptively combines the advantages of three mutation schemes and introduces two opposite population stages to avoid premature convergence. The probability of choosing each mutation scheme will be updated based on its previous performance after the first learning period. The IOSaDE method is compared with nine other traditional differential evolution (DE) methods in simulated spectra with different simulation parameters and experimental spectra at different probe time delays. In simulated spectra, both the average and standard deviation values of the final residuals from 20 consecutive trials using IOSaDE are more than two orders of magnitude smaller than those using other methods. Meanwhile, the fitting temperatures in simulated spectra using IOSaDE are all consistent with the target temperatures. In experimental spectra, the standard deviations of the fitting temperatures from 20 consecutive trials decrease more than four times by using IOSaDE, and the errors of the fitting temperatures also decrease more than 18%. The performance of the IOSaDE algorithm shows the ability to achieve accurate and stable temperature measurement in CARS thermometry and indicates the potential in applications where multiple parameters need to be considered.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry

Daniel R. Richardson, Hans U. Stauffer, Sukesh Roy, and James R. Gord
Appl. Opt. 56(11) E37-E49 (2017)

Impact of input field characteristics on vibrational femtosecond coherent anti-Stokes Raman scattering thermometry

Chao-Bo Yang, Ping He, David Escofet-Martin, Jiang-Bo Peng, Rong-Wei Fan, Xin Yu, and Derek Dunn-Rankin
Appl. Opt. 57(2) 197-207 (2018)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.